forked from uzh-rpg/rpg_e2vid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_reconstruction.py
112 lines (92 loc) · 5.3 KB
/
run_reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch
from utils.loading_utils import load_model, get_device
import numpy as np
import argparse
import pandas as pd
from utils.event_readers import FixedSizeEventReader, FixedDurationEventReader
from utils.inference_utils import events_to_voxel_grid, events_to_voxel_grid_pytorch
from utils.timers import Timer
import time
from image_reconstructor import ImageReconstructor
from options.inference_options import set_inference_options
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Evaluating a trained network')
parser.add_argument('-c', '--path_to_model', required=True, type=str,
help='path to model weights')
parser.add_argument('-i', '--input_file', required=True, type=str)
parser.add_argument('--fixed_duration', dest='fixed_duration', action='store_true')
parser.set_defaults(fixed_duration=False)
parser.add_argument('-N', '--window_size', default=None, type=int,
help="Size of each event window, in number of events. Ignored if --fixed_duration=True")
parser.add_argument('-T', '--window_duration', default=33.33, type=float,
help="Duration of each event window, in milliseconds. Ignored if --fixed_duration=False")
parser.add_argument('--num_events_per_pixel', default=0.35, type=float,
help='in case N (window size) is not specified, it will be \
automatically computed as N = width * height * num_events_per_pixel')
parser.add_argument('--skipevents', default=0, type=int)
parser.add_argument('--suboffset', default=0, type=int)
parser.add_argument('--compute_voxel_grid_on_cpu', dest='compute_voxel_grid_on_cpu', action='store_true')
parser.set_defaults(compute_voxel_grid_on_cpu=False)
set_inference_options(parser)
args = parser.parse_args()
# Read sensor size from the first first line of the event file
path_to_events = args.input_file
header = pd.read_csv(path_to_events, delim_whitespace=True, header=None, names=['width', 'height'],
dtype={'width': np.int, 'height': np.int},
nrows=1)
width, height = header.values[0]
print('Sensor size: {} x {}'.format(width, height))
# Load model
model = load_model(args.path_to_model)
device = get_device(args.use_gpu)
model = model.to(device)
model.eval()
reconstructor = ImageReconstructor(model, height, width, model.num_bins, args)
""" Read chunks of events using Pandas """
# Loop through the events and reconstruct images
N = args.window_size
if not args.fixed_duration:
if N is None:
N = int(width * height * args.num_events_per_pixel)
print('Will use {} events per tensor (automatically estimated with num_events_per_pixel={:0.2f}).'.format(
N, args.num_events_per_pixel))
else:
print('Will use {} events per tensor (user-specified)'.format(N))
mean_num_events_per_pixel = float(N) / float(width * height)
if mean_num_events_per_pixel < 0.1:
print('!!Warning!! the number of events used ({}) seems to be low compared to the sensor size. \
The reconstruction results might be suboptimal.'.format(N))
elif mean_num_events_per_pixel > 1.5:
print('!!Warning!! the number of events used ({}) seems to be high compared to the sensor size. \
The reconstruction results might be suboptimal.'.format(N))
initial_offset = args.skipevents
sub_offset = args.suboffset
start_index = initial_offset + sub_offset
if args.compute_voxel_grid_on_cpu:
print('Will compute voxel grid on CPU.')
if args.fixed_duration:
event_window_iterator = FixedDurationEventReader(path_to_events,
duration_ms=args.window_duration,
start_index=start_index)
else:
event_window_iterator = FixedSizeEventReader(path_to_events, num_events=N, start_index=start_index)
with Timer('Processing entire dataset'):
for event_window in event_window_iterator:
last_timestamp = event_window[-1, 0]
with Timer('Building event tensor'):
if args.compute_voxel_grid_on_cpu:
event_tensor = events_to_voxel_grid(event_window,
num_bins=model.num_bins,
width=width,
height=height)
event_tensor = torch.from_numpy(event_tensor)
else:
event_tensor = events_to_voxel_grid_pytorch(event_window,
num_bins=model.num_bins,
width=width,
height=height,
device=device)
num_events_in_window = event_window.shape[0]
reconstructor.update_reconstruction(event_tensor, start_index + num_events_in_window, last_timestamp)
start_index += num_events_in_window