-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathdata_loader.py
223 lines (172 loc) · 7.8 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torch.utils.data as data
import os
import pickle
import numpy as np
from data_utils import Vocabulary
from data_utils import load_data_and_labels_klp, load_data_and_labels_exo
from konlpy.tag import Mecab
NER_idx_dic = {'<unk>':0, 'LC':1, 'DT':2, 'OG':3, 'TI':4, 'PS':5}
class DocumentDataset (data.Dataset):
""""""
def __init__(self, vocab, char_vocab, pos_vocab, lex_dict, x_text, x_split, x_pos, labels):
"""
:param vocab:
"""
self.vocab = vocab
self.char_vocab = char_vocab
self.pos_vocab = pos_vocab
self.lex_dict = lex_dict
self.x_text = x_text
self.x_split = x_split
self.x_pos = x_pos
self.labels = labels
def __getitem__(self, index):
"""Returns 'one' data pair """
x_text_item = self.x_text[index]
x_split_item = self.x_split[index]
x_pos_item = self.x_pos[index]
label_item = self.labels[index]
x_text_char_item = []
for x_word in x_text_item:
x_char_item = []
for x_char in x_word:
x_char_item.append(x_char)
x_text_char_item.append(x_char_item)
x_idx_item = prepare_sequence(x_text_item, self.vocab.word2idx)
x_idx_char_item = prepare_char_sequence(x_text_char_item, self.char_vocab.word2idx)
x_pos_item = prepare_sequence(x_pos_item, self.pos_vocab.word2idx)
x_lex_item = prepare_lex_sequence(x_text_item, self.lex_dict)
label = torch.LongTensor(label_item)
# print("label")
# print(label)
# print(type(label))
return x_text_item, x_split_item, x_idx_item, x_idx_char_item, x_pos_item, x_lex_item, label
def __len__(self):
return len(self.x_text)
def prepare_sequence(seq, word_to_idx):
idxs = list()
# idxs.append(word_to_idx['<start>'])
for word in seq:
if word not in word_to_idx:
idxs.append(word_to_idx['<unk>'])
else:
idxs.append(word_to_idx[word])
# print(word_to_idx[word])
# idxs.append(word_to_idx['<eos>'])
return idxs
def prepare_char_sequence(seq, char_to_idx):
char_idxs = list()
# idxs.append(word_to_idx['<start>'])
for word in seq:
idxs = list()
for char in word:
if char not in char_to_idx:
idxs.append(char_to_idx['<unk>'])
else:
idxs.append(char_to_idx[char])
char_idxs.append(idxs)
# print(word_to_idx[word])
# idxs.append(word_to_idx['<eos>'])
return char_idxs
def prepare_lex_sequence(seq, lex_to_ner_list):
lex_idxs = list()
# idxs.append(word_to_idx['<start>'])
for lexicon in seq:
if lexicon not in lex_to_ner_list:
lex_idxs.append([lex_to_ner_list['<unk>']])
else:
lex_idxs.append(lex_to_ner_list[lexicon])
# print(word_to_idx[word])
# idxs.append(word_to_idx['<eos>'])
return lex_idxs
def collate_fn(data):
"""Creates mini-batch tensor"""
data.sort(key=lambda x: len(x[0]), reverse=True)
x_text_batch, x_split_batch, x_idx_batch, x_idx_char_batch, x_pos_batch, x_lex_batch, labels = zip(*data)
lengths = [len(label) for label in labels]
targets = torch.zeros(len(labels), max(lengths), 10).long()
for i, label in enumerate(labels):
end = lengths[i]
targets[i, :end] = label[:end]
max_word_len = int(np.amax([len(word_tokens) for word_tokens in x_idx_batch])) # ToDo: usually, np.mean can be applied
batch_size = len(x_idx_batch)
batch_words_len = []
batch_words_len = [len(word_tokens) for word_tokens in x_idx_batch]
batch_words_len = np.array(batch_words_len)
# Padding procedure (word)
padded_word_tokens_matrix = np.zeros((batch_size, max_word_len), dtype=np.int64)
for i in range(padded_word_tokens_matrix.shape[0]):
for j in range(padded_word_tokens_matrix.shape[1]):
try:
padded_word_tokens_matrix[i, j] = x_idx_batch[i][j]
except IndexError:
pass
max_char_len = int(np.amax([len(char_tokens) for word_tokens in x_idx_char_batch for char_tokens in word_tokens]))
if max_char_len < 5: # size of maximum filter of CNN
max_char_len = 5
# Padding procedure (char)
padded_char_tokens_matrix = np.zeros((batch_size, max_word_len, max_char_len), dtype=np.int64)
for i in range(padded_char_tokens_matrix.shape[0]):
for j in range(padded_char_tokens_matrix.shape[1]):
for k in range(padded_char_tokens_matrix.shape[1]):
try:
padded_char_tokens_matrix[i, j, k] = x_idx_char_batch[i][j][k]
except IndexError:
pass
# Padding procedure (pos)
padded_pos_tokens_matrix = np.zeros((batch_size, max_word_len), dtype=np.int64)
for i in range(padded_pos_tokens_matrix.shape[0]):
for j in range(padded_pos_tokens_matrix.shape[1]):
try:
padded_pos_tokens_matrix[i, j] = x_pos_batch[i][j]
except IndexError:
pass
# Padding procedure (lex)
padded_lex_tokens_matrix = np.zeros((batch_size, max_word_len, len(NER_idx_dic)))
for i in range(padded_lex_tokens_matrix.shape[0]):
for j in range(padded_lex_tokens_matrix.shape[1]):
for k in range(padded_lex_tokens_matrix.shape[2]):
try:
for x_lex in x_lex_batch[i][j]:
k = NER_idx_dic[x_lex]
padded_lex_tokens_matrix[i, j, k] = 1
except IndexError:
pass
padded_word_tokens_matrix = torch.from_numpy(padded_word_tokens_matrix)
padded_char_tokens_matrix = torch.from_numpy(padded_char_tokens_matrix)
padded_pos_tokens_matrix = torch.from_numpy(padded_pos_tokens_matrix)
padded_lex_tokens_matrix = torch.from_numpy(padded_lex_tokens_matrix).float()
return x_text_batch, x_split_batch, padded_word_tokens_matrix, padded_char_tokens_matrix, padded_pos_tokens_matrix, padded_lex_tokens_matrix, targets, batch_words_len
def get_loader(data_file_dir, vocab, char_vocab, pos_vocab, lex_dict, batch_size, shuffle, num_workers, dataset='klp'):
""""""
if dataset == 'klp':
x_list, x_pos_list, x_split_list, y_list = load_data_and_labels_klp(data_file_dir=data_file_dir)
y_list = np.array(y_list)
elif dataset == 'exo':
x_list, x_pos_list, x_split_list, y_list = load_data_and_labels_exo(data_file_dir='./data_in/EXOBRAIN_NE_CORPUS_10000.txt')
y_list = np.array(y_list)
elif dataset == 'both':
x_list, x_pos_list, x_split_list, y_list = load_data_and_labels_klp(data_file_dir=data_file_dir)
x_list_2, x_pos_list_2, x_split_list_2, y_list_2 = load_data_and_labels_exo(data_file_dir='./data_in/EXOBRAIN_NE_CORPUS_10000.txt')
x_list = x_list + x_list_2
x_pos_list = x_pos_list + x_pos_list_2
x_split_list = x_split_list + x_split_list_2
y_list = y_list + y_list_2
y_list = np.array(y_list)
print("len(x_list):",len(x_list))
print("len(y_list):",len(y_list))
document = DocumentDataset(vocab=vocab,
char_vocab=char_vocab,
pos_vocab=pos_vocab,
lex_dict=lex_dict,
x_text=x_list,
x_split=x_split_list,
x_pos=x_pos_list,
labels=y_list)
data_loader = torch.utils.data.DataLoader(dataset=document,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
collate_fn=collate_fn)
return data_loader