-
Notifications
You must be signed in to change notification settings - Fork 1
/
present.tex
1472 lines (1273 loc) · 40.6 KB
/
present.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{header-present}
\newcommand{\mypathjcc}{../thesis/jcc}
\newcommand{\mypathjccdata}{../thesis/jcc/data}
\input{\mypathjcc/def}
\title[Cascading Power Failures]{Computational Models for Risk and Reliability on~Bulk~Power~Systems}
\author{Eric Anderson}
\institute{UW Madison}
\date{December 10th, 2014}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\subsubsection{Outline}
\frame{Outline \hfill Percent Complete
\tableofcontents[subsubsectionstyle=hide] }
\section{Modeling Cascading Power Failures, Ch. 2 \hfill (92\%)}
\frame{\tableofcontents[currentsection,subsubsectionstyle=hide]}
\subsection{Cascading Power Failures}
\begin{frame}{Modeling Cascading Power Failures}
\textbf{Cascading power failure} is a process in which an outage on the power grid weakens the system and shifts load, which in turn causes another outage, and so forth
\alert{Outline}
\begin{itemize}
\item The Real World Problem
\item Model of Cascading Power Failures
%\bi
%\item Equillibrium and Critical Points
%\ei
\item Multi-stage stochastic program
%\bi
%\item Effective capacity and a priori sampling
%\item Decision dependent uncertainty
%\item Binary variables for line failures
%\ei
\item Planning Models (Transmission Expansion)
\end{itemize}
\end{frame}
\subsubsection{Reliability Problems}
\begin{frame}{Reliability Problems}
\alert{Cascading power failures}
\bi
\item Rare, but costly
\item Power tail distribution, unchanged for 30 years
\item Northeast blackout 2003
\bi
\item \$6 billion economic loss
\item Loss of life
\ei
\ei
\pause
\alert{Power Interruptions}
\bi
\item \$79 billion economic loss (2001)
\bi
\item \$247 billion electricity sales
\ei
\item Hidden from system, distributed throughout economy
\item New technologies: renewables, EVs, etc. stressful on system
\ei
\end{frame}
\subsubsection{OPA Model}
\begin{frame}{Forces on System}
Full OPA (Oak Ridge, PSERC Wisc., and Alaska) model tries to capture these forces and find an equillibrium that is seen in the real world \newline \\
\pause
Short Term Forces:
\begin{itemize}
\item Random demand fluctuations
\item \alert{Blackouts, Cascading Process}
\item Dispatch Model
\end{itemize}
\pause
Long Term Forces:
\begin{itemize}
\item Economic and political processes
\item System repair
\item Load growth
\item Design and upgrade of system
\end{itemize}
\end{frame}
\subsubsection{Dynamic Equilibrium}
\begin{frame}{Equilibrium}
Self-organized into dynamic equilibrium where blackouts of all sizes occur\newline
\\
\pause
Average frequency of blackouts steady for 30 years
\bi
\item Changes seasonally and with time of day
\item Power tail distribution, exponent around $-1.3\pm.2$
\ei
\vspace{10pt}
\pause
\textbf{Critical Points} maximum system throughput
\bi
\item Limited by transmission constraints, large blackout, less frequent
\item Limited by generation capacity, smaller blackout, more frequent
\ei
\end{frame}
\subsubsection{OPA Simulation}
\begin{frame}{Cascade Simulation }
Hard to predict how cascade propagates, this rough cut simulation mimics distribution of real power outages, a heavy tailed distribution \newline \\
\begin{center}
\begin{tikzpicture}[scale=1.3]
\draw [->,thick] (1,1) node[anchor=east,label=below:occurs]{$\xi$}
-- (1.35,1) node(TC)[anchor=west,text width=1.4cm,text centered, rectangle, draw]{\scriptsize Topology Changes};
\draw[->,thick] (TC)
--(3.1,1) node(PF)[anchor=west,text width=1.4cm,text centered, rectangle,draw]{\scriptsize Power Flow Calculated};
\draw[->,thick] (PF)
--(5,1) node(F)[anchor=west,text width=1.5cm, text centered, rectangle, draw]{\scriptsize Overloaded Lines Fail, Probability $p$};
\draw[->,thick] (F)
--(7.2,1) node(DN)[anchor=west,text width=1.5cm, text centered,rectangle,draw]{\scriptsize No Failures, Cascade Done};
\draw[->,thick] (F.south west)
--(4.6,-.5) node(LF)[anchor=east,text width=1.6cm, text centered, rectangle, draw]{\scriptsize Line Failures };
\draw[->,thick] (LF.west)
-- (TC.south east);
\end{tikzpicture}
\end{center}
%Initial event $\xi$ happens \newline
%Power Flow calulated for new system \newline
%If a line is at its limit, it will fail with a given probability\newline
%Once the new set of outages is found, the process repeats by calculating new power flow
\end{frame}
\frame{
\frametitle{Visualizing a Cascade}
\BCS
\BC{0.7}
\centering
\begin{tikzpicture}[line width=2pt]
\node[circle,fill=red!20] (one) at (3,0) {1};
\node[circle,fill=red!20] (two) at (5,0) {2};
\node[rectangle,fill=green!20] (three) at (7,1) {3};
\node[rectangle,fill=green!20] (four) at (5,1.75) {4};
\node[rectangle,fill=green!20] (five) at (3,1.75) {5};
\node[circle,fill=red!20] (six) at (2,3) {6};
\node[rectangle,fill=green!20] (seven) at (5,3) {7};
\node[circle,fill=blue!20] (eight) at (4,3.5) {8};
\node[rectangle,fill=green!20] (nine) at (7,3) {9};
\node[rectangle,fill=green!20] (ten) at (6,4) {10};
\node[rectangle,fill=green!20] (eleven) at (3,5) {11};
\node[rectangle,fill=green!20] (twelve) at (2,5) {12};
\node[rectangle,fill=green!20] (thirteen) at (1,4) {13};
\node[rectangle,fill=green!20] (fourteen) at (4,6) {14};
\invisible<2->{\draw[red] (one) -- (two) ;}
\invisible<2->{\draw (one) -- (five);}
\invisible<3->{\draw<2->[red] (one) -- (five) ; }
\invisible<2->{\draw[red] (two) -- (three) ; }
\invisible<2->{\draw[red] (two) -- (four) ; }
\draw (two) -- (five) ;
\invisible<2->{\draw[red] (three) -- (four) ; }
%\invisible<2->{\draw[red] (four) -- (five) ; }
\draw (four) -- (five) ;
\invisible<4->{\draw (four) -- (seven);}
\invisible<5->{\draw<4->[red] (four) -- (seven) ;}
\invisible<4->{\draw (four) -- (nine);}
\invisible<4->{\draw<3->[red] (four) -- (nine) ; }
\draw (five) -- (six) ;
\invisible<2->{\draw[red] (six) -- (eleven) ; }
\draw (six) -- (twelve) ;
\draw (six) -- (thirteen) ;
\draw (seven) -- (eight) ;
\invisible<2->{\draw[red] (seven) -- (nine) ; }
\draw (nine) -- (ten) ;
\draw (nine) .. controls +(up:1.2cm) .. (fourteen) ;
\draw (ten) -- (eleven);
%\invisible<5-> {\draw<4->[red] (ten) -- (eleven) ; }
\invisible<3->{\draw (twelve) -- (thirteen);}
\invisible<5-> { \draw<3- >[red](twelve) -- (thirteen) ; }
\draw (thirteen) .. controls +(up:1.2cm) .. (fourteen) ;
\end{tikzpicture}
\EC
\BC{0.3}
\BI
\item<2->{Original Fault}
\item<3->{$t=2$, Line $(1,5)$ fails}
\item<4->{$t=3$, Line $(4,7)$ fails}
\item<5->{$t=4$, \alert{Few Lines Out}}
\item<6->{No lines overloaded, cascade done}
\EI
\EC
\ECS
}
\begin{frame}{Cascade Review}
At each stage, OPA minimizes load shed first and foremost!
\pause
\bi
\item \alert{OPA is GREEDY!}
\item Need to capture this behavior
\bi
\item Load shed early to avoid large blackouts
\item Then distribution does not match
\ei
\ei
\begin{center}
\begin{tikzpicture}[scale=1.3]
\draw [->,thick] (1,1) node[anchor=east,label=below:occurs]{$\xi$}
-- (1.35,1) node(TC)[anchor=west,text width=1.4cm,text centered, rectangle, draw]{\scriptsize Topology Changes};
\draw[->,thick] (TC)
--(3.1,1) node(PF)[anchor=west,text width=1.4cm,text centered, rectangle,draw]{\scriptsize \alert{Power Flow Calculated}};
\draw[->,thick] (PF)
--(5,1) node(F)[anchor=west,text width=1.5cm, text centered, rectangle, draw]{\scriptsize Overloaded Lines Fail, Probability $p$};
\draw[->,thick] (F)
--(7.2,1) node(DN)[anchor=west,text width=1.5cm, text centered,rectangle,draw]{\scriptsize No Failures, Cascade Done};
\draw[->,thick] (F.south west)
--(4.6,-.5) node(LF)[anchor=east,text width=1.6cm, text centered, rectangle, draw]{\scriptsize Line Failures };
\draw[->,thick] (LF.west)
-- (TC.south east);
\end{tikzpicture}
\end{center}
%Initial event $\xi$ happens \newline
%Power Flow calulated for new system \newline
%If a line is at its limit, it will fail with a given probability\newline
%Once the new set of outages is found, the process repeats by calculating new power flow
\end{frame}
\subsection{Multi-Stage Stochastic Program}
\begin{frame}{Super Model}
\BBR{Multi-Stage Stochastic Program (IP-OPA)}
\begin{itemize}
\item Mathematical model of OPA
\item Gives flexibility to use as sub-model in design problems
\item Computationally difficult
\begin{itemize}
\item Decision dependent uncertainty
\bi
\item Model with binary variables
\item Sampling done a priori
\ei
\item Large sample size makes IP-OPA difficult
\end{itemize}
\end{itemize}
\EBR
\end{frame}
\begin{frame}{Scenario Tree}
The OPA simulation will be built using a scenario tree
\bi
\item Cascade evolves depending on decision at $n$
\bi
\item Each node has DC power flow
\ei
\item Branch factor $M$ determines resolution of uncertainty
\ei
\begin{center}
\begin{tikzpicture}[scale=.80]
\draw (-1,2.5) node(RHO)[circle,draw,scale=.8]{\small $\rho(n)$ };
\draw (2,2.25) node(NUP)[circle,dashed,scale=2.4,draw]{ };
\draw (2,1) node(N)[circle,scale=1.5,draw]{\scriptsize $n$ };
\draw (2,-.25) node(NDOWN)[circle,dashed,scale=2.4,draw]{ };
\draw (5,2.5) node(N1)[circle,scale=1,draw]{\scriptsize $n_1$ };
\draw (5,1.5) node(N2)[circle,scale=1,draw]{\scriptsize $n_2$ };
\draw (5,-.5) node(NO)[circle,scale=1,draw]{\scriptsize $n_M$ };
\draw[thick,dashed, ->] (RHO) -- (NUP);
\draw[thick,->] (RHO) -- (N);
\draw[thick,dashed, ->] (RHO) -- (NDOWN);
\draw[thick,->] (N) -- (N1);
\draw[thick,->] (N) -- (N2);
\draw[thick,->] (N) -- (NO);
\draw[thick,dashed] (N2) -- (NO);
\draw[thick] (-2,-1.5) -- (5.5,-1.5);
\draw[thick] (-1, -1.75) -- (-1, -1.25);
\draw[thick] (2, -1.75) -- (2, -1.25);
\draw[thick] (5, -1.75) -- (5, -1.25);
\draw(-2.2,-2) node {Stage};
\draw(-1,-2) node {$t-1$};
\draw(2,-2) node {$t$};
\draw(5,-2) node {$t+1$};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}{DC Power Flow}
Lossless power flow and nominal voltage magnitudes.
\begin{align*} \displaystyle
\sum_{j \in \cV}{f_{ijn}} &= p_{in} -d_{in} \hspace{20px} \forall i \in \cV, \forall n \in \cN
\\
\theta_{in} - \theta_{jn} &= X_{ij} f_{ijn} \hspace{20px} \forall i,j \in \cV, \forall n \in \cN
\end{align*}
\begin{itemize}
\item Linear
%\begin{itemize}
%\item Can use MIP, not MINLP
%\end{itemize}
\item Common approximation used in most economic models
\end{itemize}
\end{frame}
%\subsection{Decision Dependent Uncertainty}
\begin{frame}{Probablistic Branch Failure}
Model branch failures dependent on current flow
\pgfplotsset{every axis plot/.append style={line width=2pt}}
\tikzset{
every pin/.style={fill=yellow!50!white,rectangle,rounded corners=3pt,font=\tiny},
small dot/.style={fill=black,circle,scale=0.3}
}
\begin{center}
\begin{tabular}{c c}
\begin{tikzpicture}[scale=.65]
\begin{axis}[
xlabel=$f$,
ylabel=$P( R < f )$,
title = OPA Simulation Failure PDF,
unbounded coords = jump,
xtick= {0},
ytick= {0, 1},
extra y ticks={.5},
extra y tick style={grid=major},
extra y tick labels={$p$},
extra x ticks={.575,1},
extra x tick labels={$L$, $U$},
ymax=1.1,
xmax=1.1,
scatter/classes={
a={mark=o,line width=3.5pt},%
b={mark=o,line width=1pt,scale=1.75}%
}]
\addplot[black] coordinates {
(0,0)
(.985,0)
% (,.485)
% (1,inf)
% (1,1)
};
\addplot[
scatter,only marks,
scatter src=explicit symbolic]
coordinates {
(0,0) [a]
(1,0) [b]
(1,.5) [a]
(1,1) [b]
};
\addplot[black] coordinates {
(1.025,1)
(2,1)
};
\end{axis}
\end{tikzpicture}
&
\begin{tikzpicture}[scale=.65]
\begin{axis}[
xlabel=$f$,
ylabel=$P( R < f )$,
title = Effective Capacity PDF,
unbounded coords = jump,
xtick= {0},
ytick= {0, 1},
extra y ticks={.5},
extra y tick style={grid=major},
extra y tick labels={$p$},
extra x ticks={.575,1},
extra x tick labels={$L$, $U$},
xmax=1.1,
scatter/classes={
a={mark=o,line width=3.5pt},%
b={mark=o,line width=1pt,scale=1.75}%
}]
\addplot[black] coordinates {
(0,0)
(.575,0)
(.985,.485)
(1,inf)
(1,1)
};
\addplot[black] coordinates {
(1.025,1)
(2,1)
};
\addplot[
scatter,only marks,
scatter src=explicit symbolic]
coordinates {
(0,0) [a]
(1,.5) [a]
(1,1) [b]
};
\end{axis}
\end{tikzpicture}
\end{tabular}
\end{center}
Effective capacity reduces ``cheating''
\end{frame}
\begin{frame}{Sampling}
Line Failure if $f_e \ge \alpha U_e$ and $w_{ne} =1$.
\begin{itemize}
\item $\omega_n \equiv\left[ 0, 0, 1, 0, \cdots, 1\right]$ from Bernouillli with prob. $p$
\item $\alpha_n \equiv\left[ .75, .85, .52, .67, \cdots, .93\right]$ from Uniform $\left[ L_{ij}, U_{ij} \right]$
\end{itemize}
Effective capacity to incorporate this information.
\begin{equation*}
R_{ne} =
\left\{
\begin{array}{lr}
\alpha_{ne} U_e & \mbox{if } \omega_{ne}=1\\
U_e + \epsilon & \mbox{if } \omega_{ne}=0
\end{array}
\right.
\end{equation*}
\pause
\BBR{Effective capacity in Big-M constraints to "switch'' outaged lines}
\begin{itemize}
\item The power flow on the given branch must be fixed to 0
\item The equation relating phase angles of two connected components removed
\end{itemize}
\EBR
\end{frame}
\begin{frame}{Decision Dependent Uncertainty}
Line fails if power flow is greater than effective capacity
\begin{align*}
\mbox{If }
\hspace{30px}&\left| f_{e\rho(n)} \right| > R_{en} \\
\mbox{Then }
\hspace{30px}&z_{en} = 0
\end{align*}
\pause
To model this logic, a Big-M constraint can be used, where M represents a large number.
\begin{align*}
f_{e\rho(n)} - R_{en} &\le M^R_e (1-z_{en}) \\
f_{e\rho(n)} + R_{en} &\ge - M^R_e (1-z_{en})
\end{align*}
with $M^R_e = U_e - R_e$. \\
\end{frame}
\begin{frame}{Decision Dependent Uncertainty}
When the line is unavailable,
\begin{itemize}
\item Power flow on that branch is zero
\item Phase angles between the two nodes are not constrained
\end{itemize}
\begin{align*}
\mbox{If }
\hspace{20px}&z_{en} = 0 \\
\mbox{Then }
\hspace{20px}&f_{en} = 0 \hspace{10px} \mbox{ and}\\
&\theta_{in} - \theta_{jn} - X_{e}f_{en} \mbox{ is arbitrary}
\end{align*}
\pause
This can be achieved through the following equations.
\begin{align*}
-U_{e} z_{en} \le f_{en} &\le U_{e} z_{en} \\
\theta_{in} - \theta_{jn} + X_e f_{en} &\ge -M^\theta_e(1-z_{en}) \\
\theta_{in} - \theta_{jn} + X_e f_{en} &\le M^\theta_e(1-z_{en})
\end{align*}
with $M^\theta_e = 2 \theta_{max} + X_e U_e$.
\end{frame}
\subsubsection{Cascade Submodel}
\begin{frame}{Cascade Submodel}
The cascading process begins
\begin{itemize}
\item Intial exogenous event, $\xi \in \left\{ 0, 1 \right\}^{\magE}$.
\item Line outaged for all $\xi = 1$.
\end{itemize}
\begin{equation*}
z_{en} \le 1- \xi_e
\end{equation*}
\pause
Feasible region for cascading given effective capacity sampling
\begin{equation*}
\cX (\alpha, \omega, \xi) \equiv \left\{ \left(d, p, f, z \right) | \mbox{ DC power flow, cascade constraints hold} \right\}
\end{equation*}
\pause
\BBR{Economic Dispatch with Cascading Subproblem (IP-OPA)}
\begin{align*} \displaystyle
{\large \mbox{min}} \hspace{10px} & \Expect_\Omega \sum_{in} \left[ C_{in} p_{in,m} + W_{in} (\hat{d}_{i} - d_{in,m}) \right] \\
&(d,p,f,z)_m \in \cX (\alpha_m, \omega_m, \xi_m) \hspace{20px} \forall (\alpha_m,\omega_m,\xi_m) \in \Omega
\end{align*}
\EBR
\end{frame}
\begin{frame}{Load Shed Distribution Matches}
The IP-OPA formulation has similar load shed distribution
\begin{figure}
\centering
\begin{tikzpicture}
\begin{axis}[xlabel=$LS$ (MW), ylabel=$P($Load Shed $> LS )$
,legend pos=north east
,grid=major,
,xmin=-25,xmax=400
,title=\mbox{Load Shed Distribution} ]
\addplot[black,line width=3pt] table[x=mv, y=mp] {./data/calibrate.txt};
\addlegendentry{MSIP}
\addplot[red,line width=2pt] table[x=sv, y=sp,mark=square] {./data/calibrate.txt};
\addlegendentry{SIM}
\end{axis}
\end{tikzpicture}
\caption{Load Shed Distribution for the OPA simulation and MSIP formulation}
\label{dist}
\end{figure}
\end{frame}
\subsection{Transmission Expansion}
\begin{frame}{Transmission Expansion}
Embed IP-OPA as subproblem
\pause
\begin{itemize}
\item $\xi \in \Xi$ identified as primary risk for initiating a cascading event
\item Budget to use for expansion
\item Allocate budget to minimize risk measure of load shed
\end{itemize}
\pause
Let $x$ be the design variable
\begin{itemize}
\item First stage variable
\item Additional capacity on power lines
\end{itemize}
\pause
Effective capacity is affected
\begin{align*}
-(U_{e}+x_e) z_{en} \le f_{en} \le (U_{e}+x_e) z_{en} & \\
R_{ne} =
\left\{
\begin{array}{lr}
\alpha_{ne} (U_e + x_e) & \mbox{if } \omega_{ne}=1\\
(U_e + x_e) + \epsilon & \mbox{if } \omega_{ne}=0
\end{array}
\right.
\end{align*}
\end{frame}
\begin{frame}{Scenario Tree}
\centering
\begin{equation*}
\cX (x, \alpha, \omega, \xi) \equiv \left\{ \left(d, p, f, z \right) | \mbox{ DC, cascade, effective capacity} \right\}
\end{equation*}
\begin{tikzpicture}[scale=1]
\draw (.5,.5) node(ROOT)[circle,draw]{\small $x$ };
\draw (3,3) node(ONE)[circle,draw]{ \small $\cX_1$ };
\draw (3.25,1.5) node(TWO)[circle,draw]{ \small $\cX_2$ };
\draw (3.25,.85) node(DOTONE){ \large $\vdots$ };
\draw (3.25,0) node(N)[circle,dashed,draw]{ \small $\cX$ };
\draw (3.15,-.65) node(DOTTWO)[rotate=-15]{ \large $\vdots$ };
\draw (3,-1.5) node(S)[circle,draw]{ \small $\cX_M$ };
\draw (1.85,2.15) node(OMG1){ \small $\xi_1$ };
\draw (2.05,1.25) node(OMG2){ \small $\xi_2$ };
\draw (2.1,.4) node(OMG){ \small $\xi$ };
\draw (1.9,-.35) node(OMGS){ \small $\xi_M$ };
\draw[thick, ->] (ROOT) -- (ONE) ;
\draw[thick,->] (ROOT) -- (TWO);
\draw[thick,dashed, ->] (ROOT) -- (N);
\draw[thick,->] (ROOT) -- (S);
%\draw[thick,dashed] (TWO) -- (N);
%\draw[thick,dashed] (N) -- (S);
\end{tikzpicture}
\end{frame}
\begin{frame}{Transmission Expansion}
\BBR{Budget}
\begin{itemize}
\item $\underline{B}_e,\overline{B}_e$ minimum,maximum capacity for each line
\item $B_x$ total capacity to add
\item $B_y$ total lines to change
\end{itemize}
\EBR
\begin{subequations}
\begin{align*} \displaystyle
{\large \mbox{min}} \hspace{10px} & \Expect_\Xi \sum_{in} \left[ C_{in} p_{in,m} + W_{in} (\hat{d}_{i} - d_{in,m}) \right] \\
&(d,p,f,z)_m \in \cX(x,\alpha_m,\omega_m,\xi_m) \hspace{20px} \forall (\alpha_m,\omega_m,\xi_m) \in \Omega \\
& \underline{B}_e y_e \le x_e \le \overline{B}_e y_e \hspace{35px} \forall e \in \cE\\
&\sum_e x_e \le B_x \\
& \sum_e y_e \le B_y
\end{align*}
\end{subequations}
\end{frame}
\begin{frame}{Computationally Difficult}
To hope to solve
\bi
\item Initial contingencies $\approx 4$
\item Stages $\approx 4$
\item Branching $\approx 3$
\ei
Sometimes solve
\bi
\item Sometimes 40-100\% optimality gap
\ei
\end{frame}
\begin{frame}{Results}
This is an example of a good result
\begin{center}
\begin{tikzpicture}[scale=.6]
\begin{axis}[xlabel=$LS$ (MW), ylabel=$P($Load Shed $> LS )$
,legend pos=north east
,grid=major,
,xmin=-25,xmax=1300
,title=\mbox{Load Shed Distribution} ]
\addplot[red,line width=2pt] table[x=ls, y=prob] {./data/d25k20.dat};
\addlegendentry{design}
\addplot[blue,line width=2pt] table[x=ls, y=prob,mark=square] {./data/dumb25k20.dat};
\addlegendentry{heuristic}
\addplot[black,line width=2pt] table[x=ls, y=prob,mark=square] {./data/sim.dat};
\addlegendentry{nom}
\end{axis}
\end{tikzpicture}
\end{center}
\vspace{-15pt}
\bi
\item But not all good!
\item Many performed similar to heuristic
\item Averaging many solves helped
\bi
\item Can't represent enough uncertainty
\ei
\ei
\end{frame}
\section{Risk Model for Real-Time Dispatch, Ch. 4 \hfill (78\%)}
\frame{\tableofcontents[currentsection,subsubsectionstyle=hide]}
\begin{frame}{Risk Model for Real-Time Dispatch}
Previous model for long term design problems
\bi
\item Solve in last section
\ei
What to do in real time to reduce line loading risk?
\pause
\alert{Outline}
\bi
\item Traditional DC dispatch
\item Analysis under net injection uncertainty
\item Line failure density function and system risk
\item JCC model and cost-risk frontier
\ei
\end{frame}
\subsection{DC Dispatch and Uncertainty}
\begin{frame}{DC Power Flow}
DC Power Flow equations \alert{(notation change)}
\pause
\begin{align*}
y&=B' C \theta \\
x &= C^T y \\
x & = B \theta
\end{align*}
\pause
\begin{tabular}{c l}
$x$ & Net injections, $x<0 \equiv $demand (N)\\
$y$ & Branch flows (E)\\
$\theta$ & Phase angle (N)\\
$B'$ & Diagonal branch susceptance matrix (E x E)\\
$B$ & System matrix (N x N)\\
$C$ & Node-arc incidence matrix (E x N)\\
\end{tabular}
\pause
N-Number of nodes, E-Number of edges
\end{frame}
\begin{frame}{DC Optimal Power Flow}
Economic dispatch with quadratic cost function
\begin{alignat*}{3}
\min_{\left(x;\theta,y\right)} && \displaystyle\sum_j \left[ c_2 x_j^2 + c_1 x_j \right.&\left.+ c_0 \right] & \\
&& \textstyle \sum_j C^g_{ij} x_j - \sum_e C^b_{ie} y_e &=d_i && \forall i \\
&& y_e - b_e \textstyle \sum_i C^b_{ie} \theta_i &=0 && \forall e \\
&& y_e &\in \left[ -U_e, U_e \right] && \forall e\\
&& x_j &\in \left[ G^{min}_j, G^{max}_j \right] && \forall j
\end{alignat*}
\end{frame}
\subsubsection{Gaussian Flow and Risk Function}
\begin{frame}{Gaussian Injects}
\alert{Net Injection Uncertainties}
\bi
\item Subset of nodes have uncertain injections (i.e. wind)
\item Model as Gaussian
\ei
\pause
\begin{equation*}
\rx = C_g\left(\alert{x_g}+\rD\alert{\beta}\right) - (d + C_M \ri)
\end{equation*}
\pause
\begin{tabular}{ c l}
$\rx$ & Net injects \\
$x_g$ & Generator dispatch \\
$\beta$ & Slack distribution \\
$d$ & Expected demand \\
$\ri$ & Nodal demand variation ($\mathbb{E} \left[ \ri \right] = 0$, $\Sigma$ known)\\
$\rD$ & Aggregate demand variation ($\rD = 1^T \rdm$)
\end{tabular}
\end{frame}
\begin{frame}{DC OPF with Arbitrary Slack}
Take expectation of all terms
\pause
\bi
\item Only quadratic term is different
\ei
\begin{alignat*}{3}
\min_{\left(x,\beta;\theta,y\right)} && \displaystyle\sum_j \left[ c_2 \left(x_j^2 + \beta_j^2 \sD \right) \right. &\left.+ c_1 x_j + c_0 \right] & \\
&& \textstyle \sum_j C^g_{ij} x_j - \sum_e C^b_{ie} y_e &=d_i && \forall i \\
&& y_e - b_e \textstyle \sum_i C^b_{ie} \theta_i &=0 && \forall e \\
&& y_e &\in \left[ -U_e, U_e \right] && \forall e \\
&& x_j &\in \left[ G^{min}_j, G^{max}_j \right] && \forall j \\
&& \textstyle \sum_j \beta_j &=1 &&
\end{alignat*}
\pause
\alert{Problem!}
\bi
\item Branch, generator constraints violated large amount of scenarios
\item Need to probalistically enforce constraints
\ei
\end{frame}
\begin{frame}{DC Power Flow and Linear Shift Factor}
DC Power Flow equations
\begin{align*}
y&=B' C \theta \\
x &= C^T y\\
x &= B \theta
\end{align*}
\pause
Imply
Linear Shift Factors
\begin{equation*}
d y = A d x
\end{equation*}
where $A = B' C B^{-1}$
\end{frame}
\begin{frame}{Gaussian Branch Flows}
Assuming Gaussian injects and linear shift factors
\bi
\item Branch flows are Gaussian as well
\ei
\pause
\begin{equation*}
\ry = \alert{y_0}+ A C_G\alert{ \beta }\rD - A C_M \rdm
\end{equation*}
\pause
\begin{tabular}{c l}
$\ry$ & Branch flows \\
$y_0$ & Branch flows for forecasted system \\
$A C_g \beta \rD$ & Flow variation due to slack generation movement \\
$A C_m \rdm $ & Flow variation due to nodal inject changes
\end{tabular}
%Random component of branch flow
%\begin{equation*}
%\rf = A C_G \beta \rD - AC_M \ri
%\end{equation*}
\end{frame}
\begin{frame}{Gaussian Branch Flow}
\begin{center}
\includegraphics[scale=1.2]{jcc/fig-pdfflow}
\end{center}
\end{frame}
\begin{frame}{Chance Constraint Model}
Replace the standard constraints with probalistic ones \footnotemark \footnotemark
\pause
\bi
\item Deterministic equivalent
\ei
Generators
\[ x_j + \beta_j \sigma_\Delta \eta_g \in \left[ G^{min}_j, G^{max}_j \right] \hspace{10pt} \forall j \]
\pause
Branch flows
\[ y_e + s_e \eta_l \in \left[ U_e, U_e \right] \hspace{10pt} \forall j \]
\pause
with
\[ \eta_g = \Phi^{-1}(1 - \epsilon_g) \]
\[ \eta_l = \Phi^{-1}(1 - \epsilon_l) \]
\footnotetext[1]{{Bienstock}, D. and {Chertkov}, M. and {Harnett}, S.}
\footnotetext[2]{Vrakopoulou, M. and Chatzivasileiadis, S. and Andersson, G.}
%and
%\begin{align*}
% s^2_e &= \pi_e^2 \sD - 2 \pi_e \se +\see \\
%\pe &= \textstyle \sum_j A_{ej} \beta_j
%\end{align*}
%\begin{alignat*}{3}
% && \pe - \textstyle \sum_j A_{ej} \beta_j &=0 &&\forall e \\
% && s^2_e - \pi_e^2 \sD + 2 \pi_e \se &\geq\see &&\forall e \\
% && \textstyle \sum_j \beta_j &=1 &&
%\end{alignat*}
\end{frame}
\subsection{System Risk Measure}
\begin{frame}{System Risk}
OPF has fixed line thresholds
\bi
\item Line is completely okay
\item or system is infeasible
\ei
\pause
CC further tightens these constraints
\bi
\item Enforce line threshold probalistically
\ei
\pause
System risk related to line loadings (severity measure) \footnotemark
%\footfullcite{wang_2013}
\pause
\vspace{10pt}
%Want risk measure to compare risk of line loadings
%\vspace{10pt}
\BBR{\textbf{System Risk} Probability that no lines fail}
\begin{equation*}
h(y) = P_\Xi \left[ \mbox{at least one line fails} | y \right]
\end{equation*}
\EBR
\footnotetext[1]{Qin Wang and McCalley, J.D. and Tongxin Zheng and Litvinov, E.}
%\vspace{50pt}
%This is the product of the probability that each line does not fail
%\begin{equation*}
%h(y) = \prod_{e \in \cE} \left( 1 - g(y_e) \right)
%\end{equation*}
%\bi
%\item Implies hard line constraint, line risk=system risk
%\ei
%In the static case
%\bi
%\item Perform log transform to get exact solution
%\ei
\end{frame}
\begin{frame}{Line Risk Function}
Risk function takes the normalized flow returns line risk
\begin{equation*}
g(\hy_e) = \bP{\Xi}{\text{Line }e\text{ fails} | \hy_e}
\end{equation*}
\pause
Piece-wise linear function choosen
\bi
\item Below $L$, there is no risk associated with loading
\item After $L$, the risk increases linearly with loading
\item At critical capacity $U^c$, line fails with certainty
\ei
\pause
\begin{equation*}
g(\hy_e) = \left\{ \begin{array}{l l}
0 & \hy_e \leq L \\
a + b \hy_e & L \leq \hy_e < U^c \\
1 & U^c \leq \hy_e
\end{array}
\right.
\end{equation*}
\end{frame}
\begin{frame}{Line Risk Function}
\begin{center}
\includegraphics[scale=1.2]{jcc/fig-failuredensity}
\end{center}
\end{frame}
\begin{frame}{System Risk, Fixed Injects}
\textbf{System Risk} Probability that no lines fail
\begin{equation*}
h(y) = P_\Xi \left[ \mbox{at least 1 line fails} \right]
\end{equation*}
\pause
With fixed line flows, independent failures
\begin{equation*}
h(y) = 1 - \prod_{e \in \cE} \left( 1 - g(y_e) \right)
\end{equation*}
\pause
\bi
\item Implies hard line constraint, line risk=system risk
\item $h(y) \leq \epsilon$ not convex
\bi
\item But it is log convex, log transform and solve
\ei
\ei
\end{frame}
\begin{frame}{Gaussian Flow and Risk Function}
\begin{center}
\begin{tabular}{c c}
\includegraphics[scale=.8]{jcc/fig-pdfflow}
&
\includegraphics[scale=.8]{jcc/fig-failuredensity}\\
\hspace{10pt}Gaussian branch flow & \hspace{10pt}Line risk function
\end{tabular}
\end{center}
\end{frame}
\begin{frame}{Line Risk Function}
Risk function takes the normalized flow returns line risk
\begin{equation*}
g(\hry_e) = \bP{\Xi}{\text{Line }e\text{ fails} | \hry_e}
\end{equation*}
\pause
\alert{Assume} Conditioned on line flow
\bi