$x,y,z$ |
Translation along coordinate axis x,y and z respectively. |
$\boldsymbol{\mathrm{r}}$ |
Position vector: $\boldsymbol{\mathrm{r}} = [x \quad y \quad z]^{T}$
|
$$\boldsymbol{\mathrm{v}}$$ |
Velocity vector: $\boldsymbol{\mathrm{v}} = \boldsymbol{\mathrm{\dot{r}}}$
|
$$\boldsymbol{\mathrm{a}}$$ |
Acceleration vector: $\boldsymbol{\mathrm{a}} = \boldsymbol{\mathrm{\dot{v}}} = \boldsymbol{\mathrm{\ddot{r}}}$
|
$$\alpha$$ |
Angle of attack (AOA). |
$$b$$ |
Wing span (from tip to tip). |
$$S$$ |
Wing area. |
$$AR$$ |
Aspect ratio: $AR = b^2/S$
|
$$\beta$$ |
Angle of sideslip (AOS). |
$$c$$ |
Wing chord length. |
$$\delta$$ |
Aerodynamic control surface angular deflection. A positive deflection generates a negative moment. A positive deflection generates a negative moment. |
$$\phi,\theta,\psi$$ |
Euler angles roll (=Bank), pitch and yaw (=Heading). |
$$\Psi$$ |
Attitude vector: $\Psi = [\phi \quad \theta \quad \psi]^T$
|
$$X,Y,Z$$ |
Forces along coordinate axis x,y and z. |
$$\boldsymbol{\mathrm{F}}$$ |
Force vector: $\boldsymbol{\mathrm{F}}= [X \quad Y \quad Z]^T$
|
$$D$$ |
Drag force. |
$$C$$ |
Cross-wind force. |
$$L$$ |
Lift force. |
$$g$$ |
Gravity. |
$$l,m,n$$ |
Moments around coordinate axis x,y and z. |
$$\boldsymbol{\mathrm{M}}$$ |
Moment vector $\boldsymbol{\mathrm{M}} = [l \quad m \quad n]^T$
|
$$M$$ |
Mach number. Mach number. Can be neglected for scale aircrafts. |
$$\boldsymbol{\mathrm{q}}$$ |
Vector part of Quaternion. |
$$\boldsymbol{\mathrm{\tilde{q}}}$$ |
Hamiltonian attitude quaternion. Hamiltonian attitude quaternion. $$\boldsymbol{\mathrm{\tilde{q}}} = (q_0, q_1, q_2, q_3) = (q_0, \boldsymbol{\mathrm{q}})$$. To represent a vector in local frame given a vector in body frame, the following operation can be used: $\boldsymbol{\mathrm{\tilde{v}}}^\ell = \boldsymbol{\mathrm{\tilde{q}}} , \boldsymbol{\mathrm{\tilde{v}}}^b , \boldsymbol{\mathrm{\tilde{q}}}^{}$ (or $\boldsymbol{\mathrm{\tilde{q}}}^{-1}{}$ instead of $\boldsymbol{\mathrm{\tilde{q}}}^{}$ if $\boldsymbol{\mathrm{\tilde{q}}}{}$ is not unitary). $\boldsymbol{\mathrm{\tilde{v}}}{}$ represents a quaternionized vector: $\boldsymbol{\mathrm{\tilde{v}}} = (0,\boldsymbol{\mathrm{v}})$
|
$$\boldsymbol{\mathrm{\tilde{q}}}$$ describes the attitude relative to the local frame $$\ell$$. To represent a vector in local frame given a vector in body frame, the following operation can be used: $$\boldsymbol{\mathrm{\tilde{v}}}^\ell = \boldsymbol{\mathrm{\tilde{q}}} , \boldsymbol{\mathrm{\tilde{v}}}^b , \boldsymbol{\mathrm{\tilde{q}}}^$$ (or $$\boldsymbol{\mathrm{\tilde{q}}}^{-1}$$ instead of $$\boldsymbol{\mathrm{\tilde{q}}}^$$ if $$\boldsymbol{\mathrm{\tilde{q}}}$$ is not unitary). $$\boldsymbol{\mathrm{\tilde{v}}}$$ represents a quaternionized vector: $$\boldsymbol{\mathrm{\tilde{v}}} = (0,\boldsymbol{\mathrm{v}})$$. |
|
$$\Lambda$$ |
Leading-edge sweep angle. |
$$\lambda$$ |
Aspect ratio. $$AR = b^2/S$$. |
$$w$$ |
Wind velocity. |
$$p,q,r$$ |
Angular rates around body axis x,y and z. |
$$\boldsymbol{\omega}^b$$ |
Attitude vector. $$\Psi = [\phi \quad \theta \quad \psi]^T$$. |
$$\boldsymbol{\mathrm{x}}$$ |
General state vector. |