Skip to content

Latest commit

 

History

History
96 lines (79 loc) · 244 KB

notation.md

File metadata and controls

96 lines (79 loc) · 244 KB

术语

本指南中的文本和图表中使用了以下术语、符号和装饰器。

符号

  • Bold face variables indicate vectors or matrices and non-bold face variables represent scalars.
  • The default frame for each variable is the local frame: $\ell{}$. Right superscripts represent the coordinate frame. If no right superscript is present, then the default frame $\ell{}$ is assumed. An exception is given by Rotation Matrices, where the lower right subscripts indicates the current frame and the right superscripts the target frame.
  • Variables and subscripts can share the same letter, but they always have different meaning.

Acronyms

Acronym Expansion
AOA Angle Of Attack. Angle Of Attack. Also named alpha.
AOS Angle Of Sideslip. Angle Of Sideslip. Also named beta.
FRD Coordinate system where the X-axis is pointing towards the Front of the vehicle, the Y-axis is pointing Right and the Z-axis is pointing Down, completing the right-hand rule.
FW 固定翼.
MC MultiCopter.
MPC 或 MCPC MultiCopter Position Controller. MultiCopter Position Controller. MPC is also used for Model Predictive Control.
NED Coordinate system where the X-axis is pointing towards the true North, the Y-axis is pointing East and the Z-axis is pointing Down, completing the right-hand rule.
PID Controller with Proportional, Integral and Derivative actions.

Symbols

Variable 描述
$x,y,z$ Translation along coordinate axis x,y and z respectively.
$\boldsymbol{\mathrm{r}}$ Position vector: $\boldsymbol{\mathrm{r}} = [x \quad y \quad z]^{T}$
$$\boldsymbol{\mathrm{v}}$$ Velocity vector: $\boldsymbol{\mathrm{v}} = \boldsymbol{\mathrm{\dot{r}}}$
$$\boldsymbol{\mathrm{a}}$$ Acceleration vector: $\boldsymbol{\mathrm{a}} = \boldsymbol{\mathrm{\dot{v}}} = \boldsymbol{\mathrm{\ddot{r}}}$
$$\alpha$$ Angle of attack (AOA).
$$b$$ Wing span (from tip to tip).
$$S$$ Wing area.
$$AR$$ Aspect ratio: $AR = b^2/S$
$$\beta$$ Angle of sideslip (AOS).
$$c$$ Wing chord length.
$$\delta$$ Aerodynamic control surface angular deflection. A positive deflection generates a negative moment. A positive deflection generates a negative moment.
$$\phi,\theta,\psi$$ Euler angles roll (=Bank), pitch and yaw (=Heading).
$$\Psi$$ Attitude vector: $\Psi = [\phi \quad \theta \quad \psi]^T$
$$X,Y,Z$$ Forces along coordinate axis x,y and z.
$$\boldsymbol{\mathrm{F}}$$ Force vector: $\boldsymbol{\mathrm{F}}= [X \quad Y \quad Z]^T$
$$D$$ Drag force.
$$C$$ Cross-wind force.
$$L$$ Lift force.
$$g$$ Gravity.
$$l,m,n$$ Moments around coordinate axis x,y and z.
$$\boldsymbol{\mathrm{M}}$$ Moment vector $\boldsymbol{\mathrm{M}} = [l \quad m \quad n]^T$
$$M$$ Mach number. Mach number. Can be neglected for scale aircrafts.
$$\boldsymbol{\mathrm{q}}$$ Vector part of Quaternion.
$$\boldsymbol{\mathrm{\tilde{q}}}$$ Hamiltonian attitude quaternion. Hamiltonian attitude quaternion. $$\boldsymbol{\mathrm{\tilde{q}}} = (q_0, q_1, q_2, q_3) = (q_0, \boldsymbol{\mathrm{q}})$$. To represent a vector in local frame given a vector in body frame, the following operation can be used: $\boldsymbol{\mathrm{\tilde{v}}}^\ell = \boldsymbol{\mathrm{\tilde{q}}} , \boldsymbol{\mathrm{\tilde{v}}}^b , \boldsymbol{\mathrm{\tilde{q}}}^{}$ (or $\boldsymbol{\mathrm{\tilde{q}}}^{-1}{}$ instead of $\boldsymbol{\mathrm{\tilde{q}}}^{}$ if $\boldsymbol{\mathrm{\tilde{q}}}{}$ is not unitary). $\boldsymbol{\mathrm{\tilde{v}}}{}$ represents a quaternionized vector: $\boldsymbol{\mathrm{\tilde{v}}} = (0,\boldsymbol{\mathrm{v}})$
$$\boldsymbol{\mathrm{\tilde{q}}}$$ describes the attitude relative to the local frame $$\ell$$. To represent a vector in local frame given a vector in body frame, the following operation can be used: $$\boldsymbol{\mathrm{\tilde{v}}}^\ell = \boldsymbol{\mathrm{\tilde{q}}} , \boldsymbol{\mathrm{\tilde{v}}}^b , \boldsymbol{\mathrm{\tilde{q}}}^$$ (or $$\boldsymbol{\mathrm{\tilde{q}}}^{-1}$$ instead of $$\boldsymbol{\mathrm{\tilde{q}}}^$$ if $$\boldsymbol{\mathrm{\tilde{q}}}$$ is not unitary). $$\boldsymbol{\mathrm{\tilde{v}}}$$ represents a quaternionized vector: $$\boldsymbol{\mathrm{\tilde{v}}} = (0,\boldsymbol{\mathrm{v}})$$.
$$\Lambda$$ Leading-edge sweep angle.
$$\lambda$$ Aspect ratio. $$AR = b^2/S$$.
$$w$$ Wind velocity.
$$p,q,r$$ Angular rates around body axis x,y and z.
$$\boldsymbol{\omega}^b$$ Attitude vector. $$\Psi = [\phi \quad \theta \quad \psi]^T$$.
$$\boldsymbol{\mathrm{x}}$$ General state vector.

Subscripts / Indices

Subscripts / Indices 描述
$$a$$ Aileron.
$$e$$ Elevator.
$$r$$ Rudder.
$$Aero$$ Aerodynamic.
$$T$$ Thrust force.
$$w$$ Relative airspeed.
$$x,y,z$$ Component of vector along coordinate axis x, y and z.
$$N,E,D$$ Component of vector along global north, east and down direction.

Superscripts / Indices

Superscripts / Indices 描述
$$\ell$$ Local-frame. Local-frame. Default for PX4 related variables.
$$b$$ Body-frame.
$$w$$ Wind-frame.

Decorators

Decorator 描述
$$()^*$$ Complex conjugate.
$$\dot{()}$$ Time derivative.
$$\hat{()}$$ Estimate.
$$\bar{()}$$ Mean.
$$()^{-1}$$ Matrix inverse.
$$()^T$$ Matrix transpose.
$$\tilde{()}$$ Quaternion.