-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtreefactorial.py
76 lines (62 loc) · 2.25 KB
/
treefactorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from typing import TypeVar
Numeric = TypeVar('Numeric', int, float, complex)
EMPTY_SUM = 0
MINUS_ONE = -1
def treefactorial(high: int, low: int=None) -> int:
"""Pure Python factorial, no imports by Daniel Fischer @stackoverflow.com
Daniel Fischer says algorithm is old.
"""
if high < 2:
return 1
if low is None:
return treefactorial(high, 1)
if low + 1 < high:
mid: int= (low + high) // 2
return treefactorial(mid, low)*treefactorial(high, mid + 1)
if low == high:
return low
return low*high
factorial = treefactorial
def binom(n: int, k: int) -> int:
"""Pure Python binomial coefficient using treefactorial."""
return factorial(n)//(factorial(k)*factorial(n - k))
def _subfactorial1(n: int) -> int:
"""Pure Python subfactorial.
Also called derangement number or de Montmort number or rencontres numbers.
Published by Remond de Montmort in 1713.
"""
sum = EMPTY_SUM
for i in range(n + 1):
sum += MINUS_ONE**i/factorial(i)
return round(factorial(n)*sum)
def _subfactorial(n: int) -> int:
"""Pure Python subfactorial.
Also called derangement number or de Montmort number or rencontres numbers.
Published by Remond de Montmort in 1713.
"""
if not n:
#return round(factorial(n)*MINUS_ONE**0/factorial(0)) #cutdown version of _subfactorial for n=0
return _subfactorial1(n)
sum = EMPTY_SUM
for i in range(1, n + 1):
sum += binom(n, i)*_subfactorial(n - i)
return factorial(n) - sum
def subfactorial(number: int) -> int:
"""Pure Python subfactorial.
Also called derangement number or de Montmort number or rencontres numbers.
Published by Remond de Montmort in 1713.
Algorithm using recurrence by Euler.
"""
result = list()
for n in range(11):
result += [_subfactorial(n)]
if number < 11:
return result[number]
for n in range(11, number + 1):
result += [(n - 1)*(result[n - 2] + result[n - 1])]
return result[number]
if __name__ == '__main__':
for integer in range(100, -1, -1):
print(integer, factorial(integer))
for n in range(52):
print(n, subfactorial(n))