From bc9fbaaa10111b1f5559d10fc6857ff815a53eac Mon Sep 17 00:00:00 2001 From: francovaro Date: Thu, 1 Feb 2024 16:51:57 +0100 Subject: [PATCH] EI SDK update --- .github/workflows/pack.yml | 2 +- EdgeImpulse.EI-SDK.pdsc | 4 +- .../classifier/ei_model_types.h | 1 + .../classifier/ei_run_classifier.h | 157 +++++++++++------- .../edge-impulse-sdk/porting/ei_logging.h | 2 +- .../tensorflow/lite/micro/micro_allocator.cpp | 5 +- .../tensorflow/lite/micro/micro_graph.h | 6 + .../lite/micro/micro_interpreter.cpp | 7 +- .../tensorflow/lite/micro/micro_interpreter.h | 17 +- 9 files changed, 128 insertions(+), 73 deletions(-) diff --git a/.github/workflows/pack.yml b/.github/workflows/pack.yml index 7b302ad..71f65fe 100644 --- a/.github/workflows/pack.yml +++ b/.github/workflows/pack.yml @@ -50,4 +50,4 @@ jobs: upload_url: ${{ steps.create_release.outputs.upload_url }} asset_path: ./output/*.pack asset_name: ${{ github.ref }}.pack - asset_content_type: application/zipgh t \ No newline at end of file + asset_content_type: application/zip \ No newline at end of file diff --git a/EdgeImpulse.EI-SDK.pdsc b/EdgeImpulse.EI-SDK.pdsc index e24b269..f1167d0 100644 --- a/EdgeImpulse.EI-SDK.pdsc +++ b/EdgeImpulse.EI-SDK.pdsc @@ -8,7 +8,7 @@ hello@edgeimpulse.com - + EI-SDK @@ -55,7 +55,7 @@ - + Edge Impulse SDK diff --git a/edgeimpulse/edge-impulse-sdk/classifier/ei_model_types.h b/edgeimpulse/edge-impulse-sdk/classifier/ei_model_types.h index dd9156c..593ffd9 100644 --- a/edgeimpulse/edge-impulse-sdk/classifier/ei_model_types.h +++ b/edgeimpulse/edge-impulse-sdk/classifier/ei_model_types.h @@ -66,6 +66,7 @@ #define EI_CLASSIFIER_IMAGE_SCALING_0_255 1 #define EI_CLASSIFIER_IMAGE_SCALING_TORCH 2 #define EI_CLASSIFIER_IMAGE_SCALING_MIN1_1 3 +#define EI_CLASSIFIER_IMAGE_SCALING_MIN128_127 4 struct ei_impulse; diff --git a/edgeimpulse/edge-impulse-sdk/classifier/ei_run_classifier.h b/edgeimpulse/edge-impulse-sdk/classifier/ei_run_classifier.h index 7c8ad69..48cdbdd 100644 --- a/edgeimpulse/edge-impulse-sdk/classifier/ei_run_classifier.h +++ b/edgeimpulse/edge-impulse-sdk/classifier/ei_run_classifier.h @@ -72,6 +72,11 @@ extern "C" EI_IMPULSE_ERROR run_inference(const ei_impulse_t *impulse, ei_featur extern "C" EI_IMPULSE_ERROR run_classifier_image_quantized(const ei_impulse_t *impulse, signal_t *signal, ei_impulse_result_t *result, bool debug); static EI_IMPULSE_ERROR can_run_classifier_image_quantized(const ei_impulse_t *impulse, ei_learning_block_t block_ptr); +#if EI_CLASSIFIER_LOAD_IMAGE_SCALING +EI_IMPULSE_ERROR ei_scale_fmatrix(ei_learning_block_t *block, ei::matrix_t *fmatrix); +EI_IMPULSE_ERROR ei_unscale_fmatrix(ei_learning_block_t *block, ei::matrix_t *fmatrix); +#endif // EI_CLASSIFIER_LOAD_IMAGE_SCALING + /* Private variables ------------------------------------------------------- */ static uint64_t classifier_continuous_features_written = 0; @@ -82,62 +87,6 @@ static RecognizeEvents *avg_scores = NULL; /* These functions (up to Public functions section) are not exposed to end-user, therefore changes are allowed. */ -#if EI_CLASSIFIER_LOAD_IMAGE_SCALING -static const float torch_mean[] = { 0.485, 0.456, 0.406 }; -static const float torch_std[] = { 0.229, 0.224, 0.225 }; - -static EI_IMPULSE_ERROR scale_fmatrix(ei_learning_block_t *block, ei::matrix_t *fmatrix) { - if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_TORCH) { - // @todo; could we write some faster vector math here? - for (size_t ix = 0; ix < fmatrix->rows * fmatrix->cols; ix += 3) { - fmatrix->buffer[ix + 0] = (fmatrix->buffer[ix + 0] - torch_mean[0]) / torch_std[0]; - fmatrix->buffer[ix + 1] = (fmatrix->buffer[ix + 1] - torch_mean[1]) / torch_std[1]; - fmatrix->buffer[ix + 2] = (fmatrix->buffer[ix + 2] - torch_mean[2]) / torch_std[2]; - } - } - else if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_0_255) { - int scale_res = numpy::scale(fmatrix, 255.0f); - if (scale_res != EIDSP_OK) { - ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); - return EI_IMPULSE_DSP_ERROR; - } - } - else if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_MIN1_1) { - int scale_res = numpy::scale(fmatrix, 2.0f); - if (scale_res != EIDSP_OK) { - ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); - return EI_IMPULSE_DSP_ERROR; - } - scale_res = numpy::subtract(fmatrix, 1.0f); - if (scale_res != EIDSP_OK) { - ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); - return EI_IMPULSE_DSP_ERROR; - } - } - - return EI_IMPULSE_OK; -} - -static EI_IMPULSE_ERROR unscale_fmatrix(ei_learning_block_t *block, ei::matrix_t *fmatrix) { - if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_TORCH) { - // @todo; could we write some faster vector math here? - for (size_t ix = 0; ix < fmatrix->rows * fmatrix->cols; ix += 3) { - fmatrix->buffer[ix + 0] = (fmatrix->buffer[ix + 0] * torch_std[0]) + torch_mean[0]; - fmatrix->buffer[ix + 1] = (fmatrix->buffer[ix + 1] * torch_std[1]) + torch_mean[1]; - fmatrix->buffer[ix + 2] = (fmatrix->buffer[ix + 2] * torch_std[2]) + torch_mean[2]; - } - } - else if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_0_255) { - int scale_res = numpy::scale(fmatrix, 1 / 255.0f); - if (scale_res != EIDSP_OK) { - ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); - return EI_IMPULSE_DSP_ERROR; - } - } - return EI_IMPULSE_OK; -} -#endif - /** * @brief Display the results of the inference @@ -201,7 +150,7 @@ extern "C" EI_IMPULSE_ERROR run_inference( #if EI_CLASSIFIER_LOAD_IMAGE_SCALING // we do not plan to have multiple dsp blocks with image // so just apply scaling to the first one - EI_IMPULSE_ERROR scale_res = scale_fmatrix(&block, fmatrix[0].matrix); + EI_IMPULSE_ERROR scale_res = ei_scale_fmatrix(&block, fmatrix[0].matrix); if (scale_res != EI_IMPULSE_OK) { return scale_res; } @@ -216,7 +165,7 @@ extern "C" EI_IMPULSE_ERROR run_inference( #if EI_CLASSIFIER_LOAD_IMAGE_SCALING // undo scaling - scale_res = unscale_fmatrix(&block, fmatrix[0].matrix); + scale_res = ei_unscale_fmatrix(&block, fmatrix[0].matrix); if (scale_res != EI_IMPULSE_OK) { return scale_res; } @@ -595,6 +544,98 @@ extern "C" EI_IMPULSE_ERROR run_classifier_image_quantized( /* Thread carefully: public functions are not to be changed to preserve backwards compatibility. */ +#if EI_CLASSIFIER_LOAD_IMAGE_SCALING +static const float torch_mean[] = { 0.485, 0.456, 0.406 }; +static const float torch_std[] = { 0.229, 0.224, 0.225 }; + +EI_IMPULSE_ERROR ei_scale_fmatrix(ei_learning_block_t *block, ei::matrix_t *fmatrix) { + if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_TORCH) { + // @todo; could we write some faster vector math here? + for (size_t ix = 0; ix < fmatrix->rows * fmatrix->cols; ix += 3) { + fmatrix->buffer[ix + 0] = (fmatrix->buffer[ix + 0] - torch_mean[0]) / torch_std[0]; + fmatrix->buffer[ix + 1] = (fmatrix->buffer[ix + 1] - torch_mean[1]) / torch_std[1]; + fmatrix->buffer[ix + 2] = (fmatrix->buffer[ix + 2] - torch_mean[2]) / torch_std[2]; + } + } + else if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_0_255) { + int scale_res = numpy::scale(fmatrix, 255.0f); + if (scale_res != EIDSP_OK) { + ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); + return EI_IMPULSE_DSP_ERROR; + } + } + else if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_MIN128_127) { + int scale_res = numpy::scale(fmatrix, 255.0f); + if (scale_res != EIDSP_OK) { + ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); + return EI_IMPULSE_DSP_ERROR; + } + scale_res = numpy::subtract(fmatrix, 128.0f); + if (scale_res != EIDSP_OK) { + ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); + return EI_IMPULSE_DSP_ERROR; + } + } + else if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_MIN1_1) { + int scale_res = numpy::scale(fmatrix, 2.0f); + if (scale_res != EIDSP_OK) { + ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); + return EI_IMPULSE_DSP_ERROR; + } + scale_res = numpy::subtract(fmatrix, 1.0f); + if (scale_res != EIDSP_OK) { + ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); + return EI_IMPULSE_DSP_ERROR; + } + } + + return EI_IMPULSE_OK; +} + +EI_IMPULSE_ERROR ei_unscale_fmatrix(ei_learning_block_t *block, ei::matrix_t *fmatrix) { + if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_TORCH) { + // @todo; could we write some faster vector math here? + for (size_t ix = 0; ix < fmatrix->rows * fmatrix->cols; ix += 3) { + fmatrix->buffer[ix + 0] = (fmatrix->buffer[ix + 0] * torch_std[0]) + torch_mean[0]; + fmatrix->buffer[ix + 1] = (fmatrix->buffer[ix + 1] * torch_std[1]) + torch_mean[1]; + fmatrix->buffer[ix + 2] = (fmatrix->buffer[ix + 2] * torch_std[2]) + torch_mean[2]; + } + } + else if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_MIN128_127) { + int scale_res = numpy::add(fmatrix, 128.0f); + if (scale_res != EIDSP_OK) { + ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); + return EI_IMPULSE_DSP_ERROR; + } + scale_res = numpy::scale(fmatrix, 1 / 255.0f); + if (scale_res != EIDSP_OK) { + ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); + return EI_IMPULSE_DSP_ERROR; + } + } + else if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_MIN1_1) { + int scale_res = numpy::add(fmatrix, 1.0f); + if (scale_res != EIDSP_OK) { + ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); + return EI_IMPULSE_DSP_ERROR; + } + scale_res = numpy::scale(fmatrix, 1 / 2.0f); + if (scale_res != EIDSP_OK) { + ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); + return EI_IMPULSE_DSP_ERROR; + } + } + else if (block->image_scaling == EI_CLASSIFIER_IMAGE_SCALING_0_255) { + int scale_res = numpy::scale(fmatrix, 1 / 255.0f); + if (scale_res != EIDSP_OK) { + ei_printf("ERR: Failed to scale matrix (%d)\n", scale_res); + return EI_IMPULSE_DSP_ERROR; + } + } + return EI_IMPULSE_OK; +} +#endif + /** * @brief Init static vars */ diff --git a/edgeimpulse/edge-impulse-sdk/porting/ei_logging.h b/edgeimpulse/edge-impulse-sdk/porting/ei_logging.h index d15832e..37926c0 100644 --- a/edgeimpulse/edge-impulse-sdk/porting/ei_logging.h +++ b/edgeimpulse/edge-impulse-sdk/porting/ei_logging.h @@ -46,7 +46,7 @@ extern "C" #endif // defined(__cplusplus) && EI_C_LINKAGE == 1 -const char *debug_msgs[] = +__attribute__((unused)) static const char *debug_msgs[] = { "NONE", // this one will never show "ERR", diff --git a/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_allocator.cpp b/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_allocator.cpp index 2d4b858..e293283 100644 --- a/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_allocator.cpp +++ b/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_allocator.cpp @@ -207,7 +207,10 @@ TfLiteStatus InitializeTfLiteTensorFromFlatbuffer( result->is_variable = flatbuffer_tensor.is_variable(); result->data.data = GetFlatbufferTensorBuffer(flatbuffer_tensor, buffers); - + // this is useful for debugging +#ifdef EI_LOG_LEVEL && EI_LOG_LEVEL >= 4 + result->name = flatbuffer_tensor.name()->c_str(); +#endif // TODO(petewarden): Some of these paths aren't getting enough testing // coverage, so we should figure out some tests that exercise them. if (result->data.data == nullptr) { diff --git a/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_graph.h b/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_graph.h index 082b898..0e096c7 100644 --- a/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_graph.h +++ b/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_graph.h @@ -80,6 +80,12 @@ class MicroGraph { // to be the subgraph of that operator. int GetCurrentSubgraphIndex() { return current_subgraph_index_; } + // Set the current subgraph index. + void SetCurrentSubgraphIndex(int subgraph_idx) + { + current_subgraph_index_ = subgraph_idx; + } + // Gets the list of alloctions for each subgraph. This is the source of truth // for all per-subgraph allocation data. SubgraphAllocations* GetAllocations() { return subgraph_allocations_; } diff --git a/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_interpreter.cpp b/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_interpreter.cpp index 8877a8d..3c734fb 100644 --- a/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_interpreter.cpp +++ b/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_interpreter.cpp @@ -320,16 +320,15 @@ TfLiteTensor* MicroInterpreter::output(size_t index) { return output_tensors_[index]; } -TfLiteTensor* MicroInterpreter::tensor(size_t index) { - const size_t length = tensors_size(); +TfLiteTensor* MicroInterpreter::tensor(size_t index, size_t subgraph_idx) { + const size_t length = tensors_size(subgraph_idx); if (index >= length) { MicroPrintf("Tensor index %d out of range (length is %d)", index, length); return nullptr; } - return allocator_.AllocatePersistentTfLiteTensor(model_, graph_.GetAllocations(), index, 0); + return allocator_.AllocatePersistentTfLiteTensor(model_, graph_.GetAllocations(), index, subgraph_idx); } - // Repurposing free subgraphs to reset state for some ops for now // will reset api is made. See b/220940833#comment25 for more context. TfLiteStatus MicroInterpreter::Reset() { diff --git a/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_interpreter.h b/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_interpreter.h index 051490b..5901372 100644 --- a/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_interpreter.h +++ b/edgeimpulse/edge-impulse-sdk/tensorflow/lite/micro/micro_interpreter.h @@ -80,9 +80,10 @@ class MicroInterpreter { // one external context. TfLiteStatus SetMicroExternalContext(void* external_context_payload); - size_t tensors_size() const { return model_->subgraphs()->Get(0)->tensors()->size(); } + size_t tensors_size(size_t subgraph_idx = 0) const { return model_->subgraphs()->Get(subgraph_idx)->tensors()->size(); } + + TfLiteTensor* tensor(size_t tensor_index, size_t subgraph_idx = 0); - TfLiteTensor* tensor(size_t tensor_index); template T* typed_tensor(int tensor_index) { if (TfLiteTensor* tensor_ptr = tensor(tensor_index)) { @@ -135,13 +136,17 @@ class MicroInterpreter { TfLiteStatus initialization_status() const { return initialization_status_; } - size_t operators_size() const { return model_->subgraphs()->Get(0)->operators()->size(); } - #ifdef EON_COMPILER_RUN NodeAndRegistration* node_and_registrations_ = nullptr; - const NodeAndRegistration node_and_registration(int node_index) const { - return node_and_registrations_[node_index]; + size_t operators_size(uint32_t subgraph_idx = 0) const + { + return model_->subgraphs()->Get(subgraph_idx)->operators()->size(); + } + + const NodeAndRegistration node_and_registration(int node_index, int sg) + { + return graph_.GetAllocations()[sg].node_and_registrations[node_index]; } #endif