diff --git a/EdgeImpulse.EI-SDK.pdsc b/EdgeImpulse.EI-SDK.pdsc index b022e56..709676a 100644 --- a/EdgeImpulse.EI-SDK.pdsc +++ b/EdgeImpulse.EI-SDK.pdsc @@ -5,13 +5,16 @@ EI-SDK LICENSE-apache-2.0.txt Edge Impulse SDK - https://github.com/edgeimpulse/edge-impulse-sdk-pack/releases/download/v1.60.13/ + https://github.com/edgeimpulse/edge-impulse-sdk-pack/releases/download/v1.61.7/ hello@edgeimpulse.com https://github.com/edgeimpulse/edge-impulse-sdk-pack.git - + EI-SDK + + EI-SDK + EI-SDK @@ -98,9 +101,6 @@ EI-SDK - - - EI-SDK @@ -146,7 +146,7 @@ - + Edge Impulse SDK @@ -403,9 +403,11 @@ - + + + @@ -656,6 +658,9 @@ + + + diff --git a/EdgeImpulse.pidx b/EdgeImpulse.pidx index f57e09e..3824330 100644 --- a/EdgeImpulse.pidx +++ b/EdgeImpulse.pidx @@ -2,8 +2,8 @@ EdgeImpulse https://raw.githubusercontent.com/edgeimpulse/edge-impulse-sdk-pack/main/ - 2024-10-29 12:24:25 + 2024-11-06 09:42:54 - + diff --git a/edgeimpulse/edge-impulse-sdk/classifier/ei_fill_result_struct.h b/edgeimpulse/edge-impulse-sdk/classifier/ei_fill_result_struct.h index 5c19b37..346f3ef 100644 --- a/edgeimpulse/edge-impulse-sdk/classifier/ei_fill_result_struct.h +++ b/edgeimpulse/edge-impulse-sdk/classifier/ei_fill_result_struct.h @@ -147,6 +147,7 @@ __attribute__((unused)) static void fill_result_struct_from_cubes(ei_impulse_res static std::vector results; int added_boxes_count = 0; results.clear(); + for (auto sc : *cubes) { bool has_overlapping = false; @@ -199,7 +200,7 @@ __attribute__((unused)) static void fill_result_struct_from_cubes(ei_impulse_res } result->bounding_boxes = results.data(); - result->bounding_boxes_count = results.size(); + result->bounding_boxes_count = added_boxes_count; } #endif @@ -283,8 +284,10 @@ __attribute__((unused)) static EI_IMPULSE_ERROR fill_result_struct_f32_object_de bool debug) { #ifdef EI_HAS_SSD static std::vector results; + int added_boxes_count = 0; results.clear(); results.resize(impulse->object_detection_count); + for (size_t ix = 0; ix < impulse->object_detection_count; ix++) { float score = scores[ix]; @@ -329,13 +332,15 @@ __attribute__((unused)) static EI_IMPULSE_ERROR fill_result_struct_f32_object_de results[ix].width = static_cast((xend - xstart) * static_cast(impulse->input_width)); results[ix].height = static_cast((yend - ystart) * static_cast(impulse->input_height)); results[ix].value = score; + + added_boxes_count++; } else { results[ix].value = 0.0f; } } result->bounding_boxes = results.data(); - result->bounding_boxes_count = results.size(); + result->bounding_boxes_count = added_boxes_count; return EI_IMPULSE_OK; #else @@ -547,7 +552,7 @@ __attribute__((unused)) static EI_IMPULSE_ERROR fill_result_struct_f32_yolov5(co } result->bounding_boxes = results.data(); - result->bounding_boxes_count = results.size(); + result->bounding_boxes_count = added_boxes_count; return EI_IMPULSE_OK; #else @@ -647,7 +652,7 @@ __attribute__((unused)) static EI_IMPULSE_ERROR fill_result_struct_quantized_yol } result->bounding_boxes = results.data(); - result->bounding_boxes_count = results.size(); + result->bounding_boxes_count = added_boxes_count; return EI_IMPULSE_OK; #else @@ -852,7 +857,7 @@ __attribute__((unused)) static EI_IMPULSE_ERROR fill_result_struct_f32_yolox(con } result->bounding_boxes = results.data(); - result->bounding_boxes_count = results.size(); + result->bounding_boxes_count = added_boxes_count; return EI_IMPULSE_OK; #else @@ -1711,7 +1716,7 @@ __attribute__((unused)) static EI_IMPULSE_ERROR fill_result_struct_f32_yolov2(co } result->bounding_boxes = results.data(); - result->bounding_boxes_count = results.size(); + result->bounding_boxes_count = added_boxes_count; return EI_IMPULSE_OK; #else diff --git a/edgeimpulse/edge-impulse-sdk/classifier/ei_model_types.h b/edgeimpulse/edge-impulse-sdk/classifier/ei_model_types.h index 93b5685..9be4bc5 100644 --- a/edgeimpulse/edge-impulse-sdk/classifier/ei_model_types.h +++ b/edgeimpulse/edge-impulse-sdk/classifier/ei_model_types.h @@ -100,7 +100,19 @@ typedef struct { float detection_threshold; uint32_t suppression_ms; uint32_t suppression_flags; -} ei_model_performance_calibration_t; +} ei_performance_calibration_config_t; + +typedef struct { + uint16_t implementation_version; + uint32_t keep_grace; + uint16_t max_observations; + float iou_threshold; +} ei_object_tracking_config_t; + +typedef struct { + uint16_t implementation_version; + std::vector> segments; +} ei_object_counting_config_t; typedef int (*extract_fn_t)(ei::signal_t *signal, ei::matrix_t *output_matrix, void *config, float frequency); @@ -134,9 +146,9 @@ typedef struct { typedef struct { uint32_t block_id; - EI_IMPULSE_ERROR (*init_fn)(ei_impulse_handle_t *handle, void *config); - EI_IMPULSE_ERROR (*deinit_fn)(ei_impulse_handle_t *handle, void *config); - EI_IMPULSE_ERROR (*postprocess_fn)(ei_impulse_handle_t *handle, ei_impulse_result_t *result, void *config, bool debug); + EI_IMPULSE_ERROR (*init_fn)(ei_impulse_handle_t *handle, void **state, void *config); + EI_IMPULSE_ERROR (*deinit_fn)(void *state, void *config); + EI_IMPULSE_ERROR (*postprocess_fn)(ei_impulse_handle_t *handle, ei_impulse_result_t *result, void *config, void* state); void *config; } ei_postprocessing_block_t; @@ -340,10 +352,10 @@ typedef DspHandle* _dsp_handle_ptr_t; class ei_impulse_handle_t { public: ei_impulse_handle_t(const ei_impulse_t *impulse) - : state(impulse), impulse(impulse) {}; - void* post_processing_state; + : state(impulse), impulse(impulse), post_processing_state(nullptr) {}; ei_impulse_state_t state; const ei_impulse_t *impulse; + void** post_processing_state; }; typedef struct { diff --git a/edgeimpulse/edge-impulse-sdk/classifier/ei_run_classifier.h b/edgeimpulse/edge-impulse-sdk/classifier/ei_run_classifier.h index 67652aa..14c864d 100644 --- a/edgeimpulse/edge-impulse-sdk/classifier/ei_run_classifier.h +++ b/edgeimpulse/edge-impulse-sdk/classifier/ei_run_classifier.h @@ -233,7 +233,12 @@ extern "C" EI_IMPULSE_ERROR process_impulse(ei_impulse_handle_t *handle, // Shortcut for quantized image models ei_learning_block_t block = handle->impulse->learning_blocks[0]; if (can_run_classifier_image_quantized(handle->impulse, block) == EI_IMPULSE_OK) { - return run_classifier_image_quantized(handle->impulse, signal, result, debug); + EI_IMPULSE_ERROR res = run_classifier_image_quantized(handle->impulse, signal, result, debug); + if (res != EI_IMPULSE_OK) { + return res; + } + res = run_postprocessing(handle, result, debug); + return res; } #endif diff --git a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/alignment/ei_alignment.hpp b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/alignment/ei_alignment.hpp new file mode 100644 index 0000000..f6ad775 --- /dev/null +++ b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/alignment/ei_alignment.hpp @@ -0,0 +1,138 @@ +#pragma once + +#include +#include +#include +#include +#include +#include "rectangular_lsap.hpp" + +#if !defined(STANDALONE) +#include "edge-impulse-sdk/classifier/ei_classifier_types.h" +#endif + +__attribute__((unused)) static bool compare_tuples(std::tuple a, std::tuple b) { + return std::get<2>(a) < std::get<2>(b); +} + +float intersection_over_union(const ei_impulse_result_bounding_box_t bbox1, const ei_impulse_result_bounding_box_t bbox2) { + uint32_t x_left = std::max(bbox1.x, bbox2.x); + uint32_t y_top = std::max(bbox1.y, bbox2.y); + uint32_t x_right = std::min(bbox1.x + bbox1.width, bbox2.x + bbox2.width); + uint32_t y_bottom = std::min(bbox1.y + bbox1.height, bbox2.y + bbox2.height); + + if (x_right < x_left || y_bottom < y_top) { + return 0.0; + } + + uint32_t intersection_area = (x_right - x_left) * (y_bottom - y_top); + uint32_t bbox1_area = bbox1.width * bbox1.height; + uint32_t bbox2_area = bbox2.width * bbox2.height; + + return static_cast(intersection_area) / static_cast(bbox1_area + bbox2_area - intersection_area); +} + +class JonkerVolgenantAlignment { +public: + JonkerVolgenantAlignment(float iou_threshold) : iou_threshold(iou_threshold) { + } + + std::vector> align(const std::vector traces, + const std::vector detections) { + + if (traces.empty() || detections.empty()) { + return {}; + } + + std::vector cost_mtx(traces.size() * detections.size()); + for (size_t trace_idx = 0; trace_idx < traces.size(); ++trace_idx) { + for (size_t detection_idx = 0; detection_idx < detections.size(); ++detection_idx) { + float iou = intersection_over_union(traces[trace_idx], detections[detection_idx]); + float cost = 1 - iou; + EI_LOGD("t_idx=%zu d_idx=%zu cost=%.6f\n", trace_idx, detection_idx, cost); + cost_mtx[trace_idx * detections.size() + detection_idx] = cost; + } + } + + int64_t *alignments_a = new int64_t[traces.size()]; + int64_t *alignments_b = new int64_t[detections.size()]; + + solve(traces.size(), detections.size(), cost_mtx.data(), false, alignments_a, alignments_b); + EI_LOGD("detections size %zu\n", detections.size()); + EI_LOGD("traces size %zu\n", traces.size()); + + for (size_t i = 0; i < traces.size(); i++) { + EI_LOGD("alignments_a[%zu] %lld\n", i, alignments_a[i]); + } + + for (size_t i = 0; i < detections.size(); i++) { + EI_LOGD("alignments_b[%zu] %lld\n", i, alignments_b[i]); + } + + std::vector> matches; + + for (size_t i = 0; i < traces.size(); i++) { + size_t trace_idx = i; + size_t detection_idx = alignments_b[alignments_a[i]]; + float iou = 1 - cost_mtx[trace_idx * detections.size() + detection_idx]; + if (iou > iou_threshold) { + matches.emplace_back(trace_idx, detection_idx, iou); + } + } + delete[] alignments_a; + delete[] alignments_b; + return matches; + } + + float iou_threshold; +}; + +class GreedyAlignment { +public: + GreedyAlignment(float iou_threshold) : iou_threshold(iou_threshold) { + } + std::vector> align(const std::vector traces, + const std::vector detections) { + + if (traces.empty() || detections.empty()) { + return {}; + } + + std::vector> alignments; + for (size_t trace_idx = 0; trace_idx < traces.size(); ++trace_idx) { + for (size_t detection_idx = 0; detection_idx < detections.size(); ++detection_idx) { + float iou = intersection_over_union(traces[trace_idx], detections[detection_idx]); + float cost = 1 - iou; + EI_LOGD("t_idx=%zu d_idx=%zu cost=%.6f\n", trace_idx, detection_idx, cost); + if (iou > iou_threshold) { + alignments.emplace_back(trace_idx, detection_idx, cost); + } + } + } + + std::sort(alignments.begin(), alignments.end(), compare_tuples); + EI_LOGD("alignments.size() %zu\n", alignments.size()); + std::vector> matches; + std::set trace_idxs_matched; + std::set detection_idxs_matched; + + for (size_t i = 0; i < alignments.size(); i++) { + uint32_t trace_idx = std::get<0>(alignments[i]); + uint32_t detection_idx = std::get<1>(alignments[i]); + float cost = std::get<2>(alignments[i]); + + if (trace_idxs_matched.find(trace_idx) == trace_idxs_matched.end() && detection_idxs_matched.find(detection_idx) == detection_idxs_matched.end()) { + // (1 - cost) to get iou + matches.emplace_back(trace_idx, detection_idx, 1 - cost); + trace_idxs_matched.insert(trace_idx); + if (trace_idxs_matched.size() == traces.size()) return matches; + detection_idxs_matched.insert(detection_idx); + if (detection_idxs_matched.size() == detections.size()) return matches; + } + } + + return matches; + } + + float iou_threshold; +}; \ No newline at end of file diff --git a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/alignment/rectangular_lsap.hpp b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/alignment/rectangular_lsap.hpp new file mode 100644 index 0000000..16ff32b --- /dev/null +++ b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/alignment/rectangular_lsap.hpp @@ -0,0 +1,255 @@ +/* +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: + +1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +This code implements the shortest augmenting path algorithm for the +rectangular assignment problem. This implementation is based on the +pseudocode described in pages 1685-1686 of: + + DF Crouse. On implementing 2D rectangular assignment algorithms. + IEEE Transactions on Aerospace and Electronic Systems + 52(4):1679-1696, August 2016 + doi: 10.1109/TAES.2016.140952 + +Author: PM Larsen +*/ + +#include +#include +#include +#include + +#define RECTANGULAR_LSAP_INFEASIBLE -1 +#define RECTANGULAR_LSAP_INVALID -2 + +template std::vector argsort_iter(const std::vector &v) +{ + std::vector index(v.size()); + std::iota(index.begin(), index.end(), 0); + std::sort(index.begin(), index.end(), [&v](intptr_t i, intptr_t j) + {return v[i] < v[j];}); + return index; +} + +static intptr_t +augmenting_path(intptr_t nc, double *cost, std::vector& u, + std::vector& v, std::vector& path, + std::vector& row4col, + std::vector& shortestPathCosts, intptr_t i, + std::vector& SR, std::vector& SC, + std::vector& remaining, double* p_minVal) +{ + double minVal = 0; + + // Crouse's pseudocode uses set complements to keep track of remaining + // nodes. Here we use a vector, as it is more efficient in C++. + intptr_t num_remaining = nc; + for (intptr_t it = 0; it < nc; it++) { + // Filling this up in reverse order ensures that the solution of a + // constant cost matrix is the identity matrix (c.f. #11602). + remaining[it] = nc - it - 1; + } + + std::fill(SR.begin(), SR.end(), false); + std::fill(SC.begin(), SC.end(), false); + std::fill(shortestPathCosts.begin(), shortestPathCosts.end(), INFINITY); + + // find shortest augmenting path + intptr_t sink = -1; + while (sink == -1) { + + intptr_t index = -1; + double lowest = INFINITY; + SR[i] = true; + + for (intptr_t it = 0; it < num_remaining; it++) { + intptr_t j = remaining[it]; + + double r = minVal + cost[i * nc + j] - u[i] - v[j]; + if (r < shortestPathCosts[j]) { + path[j] = i; + shortestPathCosts[j] = r; + } + + // When multiple nodes have the minimum cost, we select one which + // gives us a new sink node. This is particularly important for + // integer cost matrices with small co-efficients. + if (shortestPathCosts[j] < lowest || + (shortestPathCosts[j] == lowest && row4col[j] == -1)) { + lowest = shortestPathCosts[j]; + index = it; + } + } + + minVal = lowest; + if (minVal == INFINITY) { // infeasible cost matrix + return -1; + } + + intptr_t j = remaining[index]; + if (row4col[j] == -1) { + sink = j; + } else { + i = row4col[j]; + } + + SC[j] = true; + remaining[index] = remaining[--num_remaining]; + } + + *p_minVal = minVal; + return sink; +} + +static int solve(intptr_t nr, intptr_t nc, double* cost, bool maximize, + int64_t* a, int64_t* b) { + // handle trivial inputs + if (nr == 0 || nc == 0) { + return 0; + } + + // tall rectangular cost matrix must be transposed + bool transpose = nc < nr; + + // make a copy of the cost matrix if we need to modify it + std::vector temp; + if (transpose || maximize) { + temp.resize(nr * nc); + + if (transpose) { + for (intptr_t i = 0; i < nr; i++) { + for (intptr_t j = 0; j < nc; j++) { + temp[j * nr + i] = cost[i * nc + j]; + } + } + + std::swap(nr, nc); + } + else { + std::copy(cost, cost + nr * nc, temp.begin()); + } + + // negate cost matrix for maximization + if (maximize) { + for (intptr_t i = 0; i < nr * nc; i++) { + temp[i] = -temp[i]; + } + } + + cost = temp.data(); + } + + // test for NaN and -inf entries + for (intptr_t i = 0; i < nr * nc; i++) { + if (cost[i] != cost[i] || cost[i] == -INFINITY) { + return RECTANGULAR_LSAP_INVALID; + } + } + + // initialize variables + std::vector u(nr, 0); + std::vector v(nc, 0); + std::vector shortestPathCosts(nc); + std::vector path(nc, -1); + std::vector col4row(nr, -1); + std::vector row4col(nc, -1); + std::vector SR(nr); + std::vector SC(nc); + std::vector remaining(nc); + + // iteratively build the solution + for (intptr_t curRow = 0; curRow < nr; curRow++) { + + double minVal; + intptr_t sink = augmenting_path(nc, cost, u, v, path, row4col, + shortestPathCosts, curRow, SR, SC, + remaining, &minVal); + if (sink < 0) { + return RECTANGULAR_LSAP_INFEASIBLE; + } + + // update dual variables + u[curRow] += minVal; + for (intptr_t i = 0; i < nr; i++) { + if (SR[i] && i != curRow) { + u[i] += minVal - shortestPathCosts[col4row[i]]; + } + } + + for (intptr_t j = 0; j < nc; j++) { + if (SC[j]) { + v[j] -= minVal - shortestPathCosts[j]; + } + } + + // augment previous solution + intptr_t j = sink; + while (1) { + intptr_t i = path[j]; + row4col[j] = i; + std::swap(col4row[i], j); + if (i == curRow) { + break; + } + } + } + + if (transpose) { + intptr_t i = 0; + for (auto v: argsort_iter(col4row)) { + a[i] = col4row[v]; + b[i] = v; + i++; + } + } + else { + for (intptr_t i = 0; i < nr; i++) { + a[i] = i; + b[i] = col4row[i]; + } + } + + return 0; +} + +#ifdef __cplusplus +extern "C" { +#endif + +int +solve_rectangular_linear_sum_assignment(intptr_t nr, intptr_t nc, + double* input_cost, bool maximize, + int64_t* a, int64_t* b) +{ + return solve(nr, nc, input_cost, maximize, a, b); +} + +#ifdef __cplusplus +} +#endif diff --git a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_object_counting.h b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_object_counting.h index ec6cc70..15bcc5b 100644 --- a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_object_counting.h +++ b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_object_counting.h @@ -1,5 +1,5 @@ /* - * Copyright (c) 2022 EdgeImpulse Inc. + * Copyright (c) 2024 EdgeImpulse Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -18,110 +18,142 @@ #ifndef EI_OBJECT_COUNTING_H #define EI_OBJECT_COUNTING_H -#if EI_CLASSIFIER_OBJECT_COUNTING_ENABLED - /* Includes ---------------------------------------------------------------- */ #include "edge-impulse-sdk/dsp/numpy_types.h" #include "edge-impulse-sdk/dsp/returntypes.hpp" #include "edge-impulse-sdk/classifier/ei_model_types.h" - -/* Private const types ----------------------------------------------------- */ -#define MEM_ERROR "ERR: Failed to allocate memory for performance calibration\r\n" - -#define EI_PC_RET_NO_EVENT_DETECTED -1 -#define EI_PC_RET_MEMORY_ERROR -2 +#include "edge-impulse-sdk/porting/ei_logging.h" extern ei_impulse_handle_t & ei_default_impulse; -class ObjectCounter { +#if EI_CLASSIFIER_OBJECT_COUNTING_ENABLED == 1 + +class CrossingCounter { public: - ObjectCounter() { - this->_count = 0; + CrossingCounter(std::vector> segments) : segments(segments) { + counts.resize(segments.size(), 0); } - void countObjectDetected() { - this->_count++; + void update(std::tuple other_segment) { + for (size_t segment_idx = 0; segment_idx < segments.size(); segment_idx++) { + if (_line_intersects(segments[segment_idx], other_segment)) { + counts[segment_idx] += 1; + } + } } - int getCount() { - return this->_count; + std::vector counts; + std::vector> segments; +private: + bool ccw(int A[2], int B[2], int C[2]) { + return (C[1] - A[1]) * (B[0] - A[0]) > (B[1] - A[1]) * (C[0] - A[0]); } -private: - int _count; + bool _line_intersects(std::tuple L1, std::tuple L2) { + int A[2] = { std::get<0>(L1), std::get<1>(L1) }; + int B[2] = { std::get<2>(L1), std::get<3>(L1) }; + int C[2] = { std::get<0>(L2), std::get<1>(L2) }; + int D[2] = { std::get<2>(L2), std::get<3>(L2) }; +// verbose debug +#if EI_LOG_LEVEL == 5 + ei_printf("A[0] = %d A[1] = %d\n", A[0], A[1]); + ei_printf("B[0] = %d B[1] = %d\n", B[0], B[1]); + ei_printf("C[0] = %d C[1] = %d\n", C[0], C[1]); + ei_printf("D[0] = %d D[1] = %d\n", D[0], D[1]); +#endif + return ccw(A, C, D) != ccw(B, C, D) && ccw(A, B, C) != ccw(A, B, D); + } }; -EI_IMPULSE_ERROR init_objcnt(ei_impulse_handle_t *handle, void *config) +EI_IMPULSE_ERROR init_object_counting(ei_impulse_handle_t *handle, void **state, void *config) { - const ei_impulse_t *impulse = handle->impulse; - const ei_model_performance_calibration_t *calibration = (ei_model_performance_calibration_t*)config; + // const ei_impulse_t *impulse = handle->impulse; + const ei_object_counting_config_t *object_counting_config = (ei_object_counting_config_t*)config; // Allocate the object counter - ObjectCounter *objcnt = new ObjectCounter(); - if (!objcnt) { - return EI_IMPULSE_OUT_OF_MEMORY; + CrossingCounter *object_counter = new CrossingCounter(object_counting_config->segments); + + if (!object_counter) { + return EI_IMPULSE_POSTPROCESSING_ERROR; } // Store the object counter in the handle - handle->post_processing_state = (void *)objcnt; + *state = (void *)object_counter; return EI_IMPULSE_OK; } -EI_IMPULSE_ERROR deinit_objcnt(ei_impulse_handle_t *handle, void *config) +EI_IMPULSE_ERROR deinit_object_counting(void *state, void *config) { - ObjectCounter *objcnt = (ObjectCounter *)handle->post_processing_state; - if (objcnt) { - delete objcnt; + CrossingCounter *object_counter = (CrossingCounter*)state; + + if (object_counter) { + delete object_counter; } return EI_IMPULSE_OK; } -EI_IMPULSE_ERROR process_objcnt(ei_impulse_handle_t *handle, - ei_impulse_result_t *result, - void *config, - bool debug) { - +EI_IMPULSE_ERROR process_object_counting(ei_impulse_handle_t *handle, + ei_impulse_result_t *result, + void *config, + void *state) +{ const ei_impulse_t *impulse = handle->impulse; - ObjectCounter *objcnt = (ObjectCounter *)handle->post_processing_state; + CrossingCounter *object_counter = (CrossingCounter*)state; if (impulse->sensor == EI_CLASSIFIER_SENSOR_CAMERA) { - if((void *)objcnt != NULL) { - objcnt->countObjectDetected(); + if((void *)object_counter != NULL) { + for (size_t i = 0; i < result->postprocessed_output.object_tracking_output.open_traces_count; i++) { + ei_object_tracking_trace_t trace = result->postprocessed_output.object_tracking_output.open_traces[i]; + object_counter->update(trace.last_centroid_segment); + } + + result->postprocessed_output.object_counting_output.counts = object_counter->counts.data(); + result->postprocessed_output.object_counting_output.counter_num = object_counter->counts.size(); } } return EI_IMPULSE_OK; } -typedef struct { - float detection_threshold; -} ei_obj_cnt_params_t; +EI_IMPULSE_ERROR set_post_process_params(ei_impulse_handle_t* handle, ei_object_counting_config_t* params) { + int16_t block_number = get_block_number(handle, (void*)init_object_counting); + if (block_number == -1) { + return EI_IMPULSE_POSTPROCESSING_ERROR; + } + CrossingCounter *object_counter = (CrossingCounter*)handle->post_processing_state[block_number]; -EI_IMPULSE_ERROR set_post_process_params(ei_impulse_handle_t* handle, ei_obj_cnt_params_t* params) { + object_counter->segments = params->segments; return EI_IMPULSE_OK; } -EI_IMPULSE_ERROR get_post_process_params(ei_impulse_handle_t* handle, ei_obj_cnt_params_t* params) { +EI_IMPULSE_ERROR get_post_process_params(ei_impulse_handle_t* handle, ei_object_counting_config_t* params) { + int16_t block_number = get_block_number(handle, (void*)init_object_counting); + if (block_number == -1) { + return EI_IMPULSE_POSTPROCESSING_ERROR; + } + CrossingCounter *object_counter = (CrossingCounter*)handle->post_processing_state[block_number]; + + params->segments = object_counter->segments; return EI_IMPULSE_OK; } // versions that operate on the default impulse -EI_IMPULSE_ERROR set_post_process_params(ei_obj_cnt_params_t *params) { +EI_IMPULSE_ERROR set_post_process_params(ei_object_counting_config_t *params) { ei_impulse_handle_t* handle = &ei_default_impulse; if(handle->post_processing_state != NULL) { - // set params + set_post_process_params(handle, params); } return EI_IMPULSE_OK; } -EI_IMPULSE_ERROR get_post_process_params(ei_obj_cnt_params_t *params) { +EI_IMPULSE_ERROR get_post_process_params(ei_object_counting_config_t *params) { ei_impulse_handle_t* handle = &ei_default_impulse; if(handle->post_processing_state != NULL) { - // get params + get_post_process_params(handle, params); } return EI_IMPULSE_OK; } diff --git a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_object_tracking.h b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_object_tracking.h new file mode 100644 index 0000000..7fb0dc8 --- /dev/null +++ b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_object_tracking.h @@ -0,0 +1,474 @@ +/* + * Copyright (c) 2024 EdgeImpulse Inc. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an "AS + * IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either + * express or implied. See the License for the specific language + * governing permissions and limitations under the License. + * + * SPDX-License-Identifier: Apache-2.0 + */ + +#ifndef EI_OBJECT_TRACKING_H +#define EI_OBJECT_TRACKING_H + +#include "edge-impulse-sdk/dsp/numpy_types.h" +#include "edge-impulse-sdk/dsp/returntypes.hpp" +#include "edge-impulse-sdk/classifier/ei_model_types.h" +#include "edge-impulse-sdk/porting/ei_logging.h" +#include "edge-impulse-sdk/classifier/postprocessing/ei_postprocessing_common.h" +#include "model-parameters/model_metadata.h" + +extern ei_impulse_handle_t & ei_default_impulse; + +#include +#include "tinyEKF/tinyekf.hpp" +#include "alignment/ei_alignment.hpp" + +float clip(float num, float min_val = -3.4028235e+38, float max_val = 3.4028235e+38) { + return std::fmax(min_val, std::fmin(num, max_val)); +} + +#if EI_CLASSIFIER_OBJECT_TRACKING_ENABLED == 1 + +typedef struct { + float keep_grace; +} ei_obj_tracking_params_t; + +class ExponentialMovingAverage { +public: + ExponentialMovingAverage(int n, float gain = 2) : gain(gain / (n + 1)), ema_value(-255.0) { + } + + void update(float value) { + if (ema_value == -255.0) { + ema_value = value; + } else { + ema_value = (value * gain) + (ema_value * (1 - gain)); + } + } + + float smoothed_value() { + return ema_value; + } + +private: + float gain; + float ema_value; +}; + +class Trace { +public: + Trace(int id, int t, const ei_impulse_result_bounding_box_t& initial_bbox, uint32_t max_observations = 5) + : id(id), last_ground_truth_update_t(t), last_prediction(initial_bbox), max_observations(max_observations) { + if (max_observations < 2) { + EI_LOGE("%s", "max_observations needs to be at least 2 for counting"); + } + + trace_label = initial_bbox.label; + observations.push_back(initial_bbox); + float initial_centroid[2] = { initial_bbox.x + static_cast(initial_bbox.width) / 2, + initial_bbox.y + static_cast(initial_bbox.height) / 2 }; + + float initial_width_height[2] = { static_cast(initial_bbox.width), + static_cast(initial_bbox.height) }; + + centroid_filter = new TinyEKF(initial_centroid, 8, 2); + width_height_filter = new TinyEKF(initial_width_height, 8, 2); + + xyxy_emas[0] = new ExponentialMovingAverage(this->max_observations); + xyxy_emas[1] = new ExponentialMovingAverage(this->max_observations); + xyxy_emas[2] = new ExponentialMovingAverage(this->max_observations); + xyxy_emas[3] = new ExponentialMovingAverage(this->max_observations); + } + + ~Trace() { + delete centroid_filter; + delete width_height_filter; + delete xyxy_emas[0]; + delete xyxy_emas[1]; + delete xyxy_emas[2]; + delete xyxy_emas[3]; + } + + ei_impulse_result_bounding_box_t predict() { + + fx_centroid[0] = centroid_filter->x[0]; + fx_centroid[1] = centroid_filter->x[1]; + fx_width_height[0] = width_height_filter->x[0]; + fx_width_height[1] = width_height_filter->x[1]; + + centroid_filter->predict(fx_centroid); + width_height_filter->predict(fx_width_height); + + ei_impulse_result_bounding_box_t p_bbox = {"", 0, 0, 0, 0, 0.0}; + p_bbox.label = trace_label; + p_bbox.x = clip((centroid_filter->x[0] - width_height_filter->x[0] / 2), 0); + p_bbox.y = clip(centroid_filter->x[1] - width_height_filter->x[1] / 2, 0); + p_bbox.width = clip(width_height_filter->x[0], 0); + p_bbox.height = clip(width_height_filter->x[1], 0); + p_bbox.value = 0.0; + last_prediction = p_bbox; + EI_LOGD("predict %d %d %d %d %f\n", last_prediction.x, last_prediction.y, last_prediction.width, last_prediction.height, last_prediction.value); + return last_prediction; + } + + void update(int t, const ei_impulse_result_bounding_box_t* bbox) { + if (bbox == nullptr) { + EI_LOGD("update (last prediction) %d %d %d %d %f\n", last_prediction.x, last_prediction.y, last_prediction.width, last_prediction.height, last_prediction.value); + bbox = &last_prediction; + } else { + EI_LOGD("update (ground truth prediction) %d %d %d %d %f\n", bbox->x, bbox->y, bbox->width, bbox->height, bbox->value); + last_ground_truth_update_t = t; + } + + hx_centroid[0] = centroid_filter->x[0]; + hx_centroid[1] = centroid_filter->x[1]; + hx_width_height[0] = width_height_filter->x[0]; + hx_width_height[1] = width_height_filter->x[1]; + + float centroid[2] = { bbox->x + static_cast(bbox->width) / 2, + bbox->y + static_cast(bbox->height) / 2 }; + centroid_filter->update(centroid , hx_centroid); + + float width_height[2] = { static_cast(bbox->width), + static_cast(bbox->height) }; + width_height_filter->update(width_height, hx_width_height); + + observations.push_back(*bbox); + while (observations.size() > max_observations) { + observations.erase(observations.begin()); + } + + xyxy_emas[0]->update(bbox->x); + xyxy_emas[1]->update(bbox->y); + xyxy_emas[2]->update(bbox->width); + xyxy_emas[3]->update(bbox->height); + + } + + std::tuple last_centroid_segment() const { + if (observations.size() < 2) { + return {}; + } + auto obs_t_minus1 = observations[observations.size() - 2]; + auto obs_t_0 = observations.back(); + + return {obs_t_minus1.x + static_cast(obs_t_minus1.width) / 2, + obs_t_minus1.y + static_cast(obs_t_minus1.height) / 2, + obs_t_0.x + static_cast(obs_t_0.width) / 2, + obs_t_0.y + static_cast(obs_t_0.height) / 2}; + } + + const ei_impulse_result_bounding_box_t* last_observation() const { + if (observations.empty()) { + return nullptr; + } + return &observations.back(); + } + + ei_impulse_result_bounding_box_t smoothed_last_observation() const { + ei_impulse_result_bounding_box_t bbox = {"", 0, 0, 0, 0, 0.0}; + if (observations.empty()) { + return bbox; + } + + bbox.x = round(xyxy_emas[0]->smoothed_value()); + bbox.y = round(xyxy_emas[1]->smoothed_value()); + bbox.width = round(xyxy_emas[2]->smoothed_value()); + bbox.height = round(xyxy_emas[3]->smoothed_value()); + + return bbox; + } + + void debug_output() const { +#if EI_LOG_LEVEL == EI_LOG_LEVEL_DEBUG + // output debug info, C-style + ei_printf("Trace %d:\n", id); + ei_printf(" Last ground truth update: %d\n", last_ground_truth_update_t); + ei_printf(" Last prediction: %d %d %d %d %f\n", last_prediction.x, last_prediction.y, last_prediction.width, last_prediction.height, last_prediction.value); + ei_printf(" Observations:\n"); + for (const auto& obs : observations) { + ei_printf("%d %d %d %d %f\n", obs.x, obs.y, obs.width, obs.height, obs.value); + } +#endif + } + + uint32_t id; + uint32_t last_ground_truth_update_t; + ei_impulse_result_bounding_box_t last_prediction; + +private: + std::vector observations; + TinyEKF* centroid_filter; + TinyEKF* width_height_filter; + uint32_t max_observations; + float fx_centroid[2]; + float fx_width_height[2]; + float hx_centroid[2]; + float hx_width_height[2]; + const char* trace_label; + ExponentialMovingAverage *xyxy_emas[4]; +}; + +class Tracker { +public: + Tracker (uint32_t keep_grace = 5, uint16_t max_observations = 5, float iou_threshold = 0.5) + : keep_grace(keep_grace), + max_observations(max_observations), + alignment(iou_threshold) { + trace_seq_id = 0; + t = 0; + } + + ~Tracker() { + for (auto trace : open_traces) { + delete trace; + } + for (auto trace : closed_traces) { + delete trace; + } + } + + std::vectoropen_traces; + std::vectorclosed_traces; + std::vector object_tracking_output; + + void process_new_detections(std::vector detections) { + // firstly try an alignment with last observations... + std::vector last_obs_bboxes; + for (auto trace : open_traces) { + last_obs_bboxes.push_back(*trace->last_observation()); + } + + std::vector> last_obs_matches = alignment.align(last_obs_bboxes, detections); + + float last_obs_cost = 0; + for (auto last_obs_match : last_obs_matches) { + EI_LOGD("last_obs_match %d %d %f\n", std::get<0>(last_obs_match), std::get<1>(last_obs_match), std::get<2>(last_obs_match)); + last_obs_cost += std::get<2>(last_obs_match); + } + EI_LOGD("last_obs_cost %f\n", last_obs_cost); + + // ... then with the kalman filter predictions + std::vector predicted_bboxes; + for (auto trace : open_traces) { + predicted_bboxes.push_back(trace->predict()); + EI_LOGD("predicted %d %d %d %d %f\n", trace->last_prediction.x, trace->last_prediction.y, trace->last_prediction.width, trace->last_prediction.height, trace->last_prediction.value); + } + + std::vector> predicted_matches = alignment.align(predicted_bboxes, detections); + float predicted_cost = 0; + for (auto predicted_match : predicted_matches) { + EI_LOGD("predicted_match %d %d %f\n", std::get<0>(predicted_match), std::get<1>(predicted_match), std::get<2>(predicted_match)); + predicted_cost += std::get<2>(predicted_match); + } + EI_LOGD("predicted_cost %f\n", predicted_cost); + + // and use whichever matching set is better + std::vector> matches; + + if (last_obs_cost > predicted_cost) { + EI_LOGD("using last_obs_matches matches\n"); + matches = last_obs_matches; + } + else { + EI_LOGD("using predicted_matches matches\n"); + matches = predicted_matches; + } + + // assume all detections are unassigned and will becomes new tracks + // until we see otherwise ( i.e. they match an existing track )∂ // + std::setunassigned_detection_idxs; + for (size_t i = 0; i < detections.size(); i++) { + unassigned_detection_idxs.insert(i); + } + + // keep track of open traces idxs that haven't been updated + std::setopen_traces_idxs_to_be_updated; + for (size_t i = 0; i < open_traces.size(); i++) { + open_traces_idxs_to_be_updated.insert(i); + } + + // update existing traces with any matches + for (size_t i = 0; i < matches.size(); i++) { + uint32_t trace_idx = std::get<0>(matches[i]); + uint32_t detection_idx = std::get<1>(matches[i]); + EI_LOGD("t_idx=%u d_idx=%u iou=%.6f\n", trace_idx, detection_idx, std::get<2>(matches[i])); + + Trace *trace = open_traces[trace_idx]; + open_traces_idxs_to_be_updated.erase(trace_idx); + trace->update(t, &detections[detection_idx]); + unassigned_detection_idxs.erase(detection_idx); + } + + for (auto detection_idx : unassigned_detection_idxs ) { + EI_LOGD("unassigned detection %d %d %d %d %d %f => starting new trace\n", detection_idx, detections[detection_idx].x, detections[detection_idx].y, detections[detection_idx].width, detections[detection_idx].height, detections[detection_idx].value); + open_traces.push_back(new Trace(trace_seq_id, t, detections[detection_idx], max_observations)); + trace_seq_id += 1; + } + + std::vectortraces_tmp; + + for (auto trace : open_traces) { + EI_LOGD("grace checking trace %d at t=%d (trace.last_ground_truth_update_t=%d)\n", trace->id, t, trace->last_ground_truth_update_t); + uint32_t time_since_last_update = t - trace->last_ground_truth_update_t; + if (time_since_last_update > keep_grace) { + // been too long since last update, close it + EI_LOGD("closing trace %d\n", trace->id); + closed_traces.push_back(trace); + } + else { + if (trace->last_ground_truth_update_t != t) { + // wasn't match this step, so do rollout of filters + EI_LOGD("self rollout of trace %d\n", trace->id); + trace->update(t, nullptr); + } + EI_LOGD("trace %d still alive\n", trace->id); + traces_tmp.push_back(trace); + } + } + + open_traces = traces_tmp; + object_tracking_output.clear(); + + for (auto trace : open_traces) { + ei_object_tracking_trace_t trace_result = { 0 }; + trace_result.id = trace->id; + trace_result.last_ground_truth_update_t = trace->last_ground_truth_update_t; + trace_result.label = trace->last_prediction.label; + trace_result.x = trace->last_prediction.x; + trace_result.y = trace->last_prediction.y; + trace_result.width = trace->last_prediction.width; + trace_result.height = trace->last_prediction.height; + trace_result.last_centroid_segment = trace->last_centroid_segment(); + + object_tracking_output.push_back(trace_result); + } + t += 1; + } + + bool set_iou_threshold(float iou_threshold) { + alignment.iou_threshold = iou_threshold; + return true; + } + + float get_iou_threshold() { + return alignment.iou_threshold; + } + + uint32_t keep_grace; + uint16_t max_observations; +private: + uint32_t trace_seq_id; + uint32_t t; + GreedyAlignment alignment; +}; + +EI_IMPULSE_ERROR init_object_tracking(ei_impulse_handle_t *handle, void** state, void *config) +{ + //const ei_impulse_t *impulse = handle->impulse; + const ei_object_tracking_config_t *ei_object_tracking_config = (ei_object_tracking_config_t*)config; + + // Allocate the object counter + Tracker *object_tracker = new Tracker(ei_object_tracking_config->keep_grace, + ei_object_tracking_config->max_observations, + ei_object_tracking_config->iou_threshold); + if (!object_tracker) { + return EI_IMPULSE_OUT_OF_MEMORY; + } + + // Store the object counter state + *state = (void*)object_tracker; + + return EI_IMPULSE_OK; +} + +EI_IMPULSE_ERROR deinit_object_tracking(void* state, void *config) +{ + Tracker *object_tracker = (Tracker *)state; + + if (object_tracker) { + delete object_tracker; + } + + return EI_IMPULSE_OK; +} + +EI_IMPULSE_ERROR process_object_tracking(ei_impulse_handle_t *handle, + ei_impulse_result_t *result, + void *config, + void *state) +{ + const ei_impulse_t *impulse = handle->impulse; + Tracker *object_tracker = (Tracker *)state; + + if (impulse->sensor == EI_CLASSIFIER_SENSOR_CAMERA) { + if((void *)object_tracker != NULL) { + ei_impulse_result_bounding_box_t *bbs = result->bounding_boxes; + uint32_t bbs_num = result->bounding_boxes_count; + std::vector detections(bbs, bbs + bbs_num); + + object_tracker->process_new_detections(detections); + + result->postprocessed_output.object_tracking_output.open_traces = object_tracker->object_tracking_output.data(); + result->postprocessed_output.object_tracking_output.open_traces_count = object_tracker->object_tracking_output.size(); + } + } + + return EI_IMPULSE_OK; +} + +EI_IMPULSE_ERROR set_post_process_params(ei_impulse_handle_t* handle, ei_object_tracking_config_t* params) { + int16_t block_number = get_block_number(handle, (void*)init_object_tracking); + if (block_number == -1) { + return EI_IMPULSE_POSTPROCESSING_ERROR; + } + Tracker *object_tracker = (Tracker*)handle->post_processing_state[block_number]; + + object_tracker->keep_grace = params->keep_grace; + object_tracker->max_observations = params->max_observations; + object_tracker->set_iou_threshold(params->iou_threshold); + return EI_IMPULSE_OK; +} + +EI_IMPULSE_ERROR get_post_process_params(ei_impulse_handle_t* handle, ei_object_tracking_config_t* params) { + int16_t block_number = get_block_number(handle, (void*)init_object_tracking); + if (block_number == -1) { + return EI_IMPULSE_POSTPROCESSING_ERROR; + } + Tracker *object_tracker = (Tracker*)handle->post_processing_state[block_number]; + + params->keep_grace = object_tracker->keep_grace; + params->max_observations = object_tracker->max_observations; + params->iou_threshold = object_tracker->get_iou_threshold(); + return EI_IMPULSE_OK; +} + +// versions that operate on the default impulse +EI_IMPULSE_ERROR set_post_process_params(ei_object_tracking_config_t *params) { + ei_impulse_handle_t* handle = &ei_default_impulse; + + if(handle->post_processing_state != NULL) { + set_post_process_params(handle, params); + } + return EI_IMPULSE_OK; +} + +EI_IMPULSE_ERROR get_post_process_params(ei_object_tracking_config_t *params) { + ei_impulse_handle_t* handle = &ei_default_impulse; + + if(handle->post_processing_state != NULL) { + get_post_process_params(handle, params); + } + return EI_IMPULSE_OK; +} + +#endif // EI_CLASSIFIER_OBJECT_TRACKING_ENABLED +#endif // EI_OBJECT_TRACKING_H \ No newline at end of file diff --git a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_performance_calibration.h b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_performance_calibration.h index 644552d..dab87b4 100644 --- a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_performance_calibration.h +++ b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_performance_calibration.h @@ -25,6 +25,8 @@ #include "edge-impulse-sdk/dsp/returntypes.hpp" #include "edge-impulse-sdk/classifier/ei_model_types.h" #include "model-parameters/model_metadata.h" +#include "edge-impulse-sdk/classifier/postprocessing/ei_postprocessing_common.h" +#include "edge-impulse-sdk/porting/ei_logging.h" /* Private const types ----------------------------------------------------- */ #define MEM_ERROR "ERR: Failed to allocate memory for performance calibration\r\n" @@ -39,10 +41,9 @@ typedef struct { } ei_perf_cal_params_t; class PerfCal { - public: PerfCal( - const ei_model_performance_calibration_t *config, + const ei_performance_calibration_config_t *config, uint32_t n_labels, uint32_t sample_length, float sample_interval_ms) @@ -70,7 +71,7 @@ class PerfCal { /* Detection threshold should be high enough to only classify 1 possible output */ if (this->_detection_threshold <= (1.f / this->_n_labels)) { - ei_printf("ERR: Classifier detection threshold too low\r\n"); + EI_LOGE("Classifier detection threshold too low\r\n"); return; } @@ -215,39 +216,39 @@ class PerfCal { uint32_t _n_scores_in_array; }; -EI_IMPULSE_ERROR init_perfcal(ei_impulse_handle_t *handle, void *config) +EI_IMPULSE_ERROR init_perfcal(ei_impulse_handle_t *handle, void **state, void *config) { const ei_impulse_t *impulse = handle->impulse; - const ei_model_performance_calibration_t *calibration = (ei_model_performance_calibration_t*)config; + const ei_performance_calibration_config_t *calibration = (ei_performance_calibration_config_t*)config; if(calibration != NULL) { PerfCal *perf_cal = new PerfCal(calibration, impulse->label_count, impulse->slice_size, impulse->interval_ms); - handle->post_processing_state = (void *)perf_cal; + *state = (void *)perf_cal; } return EI_IMPULSE_OK; } -EI_IMPULSE_ERROR deinit_perfcal(ei_impulse_handle_t *handle, void *config) +EI_IMPULSE_ERROR deinit_perfcal(void *state, void *config) { - PerfCal *perf_cal = (PerfCal*)handle->post_processing_state; + PerfCal *perf_cal = (PerfCal*)state; if((void *)perf_cal != NULL) { delete perf_cal; } - handle->post_processing_state = NULL; + state = NULL; return EI_IMPULSE_OK; } EI_IMPULSE_ERROR process_perfcal(ei_impulse_handle_t *handle, ei_impulse_result_t *result, void *config, - bool debug) { - + void *state) +{ const ei_impulse_t *impulse = handle->impulse; - PerfCal *perf_cal = (PerfCal*)handle->post_processing_state; + PerfCal *perf_cal = (PerfCal*)state; if (impulse->sensor == EI_CLASSIFIER_SENSOR_MICROPHONE) { if((void *)perf_cal != NULL) { @@ -280,13 +281,23 @@ EI_IMPULSE_ERROR process_perfcal(ei_impulse_handle_t *handle, } EI_IMPULSE_ERROR set_post_process_params(ei_impulse_handle_t* handle, ei_perf_cal_params_t* params) { - PerfCal *perf_cal = (PerfCal*)handle->post_processing_state; + int16_t block_number = get_block_number(handle, (void*)init_perfcal); + if (block_number == -1) { + return EI_IMPULSE_POSTPROCESSING_ERROR; + } + PerfCal *perf_cal = (PerfCal*)handle->post_processing_state[block_number]; + perf_cal->set_detection_threshold(params->detection_threshold); return EI_IMPULSE_OK; } EI_IMPULSE_ERROR get_post_process_params(ei_impulse_handle_t* handle, ei_perf_cal_params_t* params) { - PerfCal *perf_cal = (PerfCal*)handle->post_processing_state; + int16_t block_number = get_block_number(handle, (void*)init_perfcal); + if (block_number == -1) { + return EI_IMPULSE_POSTPROCESSING_ERROR; + } + PerfCal *perf_cal = (PerfCal*)handle->post_processing_state[block_number]; + params->detection_threshold = perf_cal->get_detection_threshold(); return EI_IMPULSE_OK; } diff --git a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_postprocessing.h b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_postprocessing.h index 0d4dfa8..4faf5df 100644 --- a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_postprocessing.h +++ b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_postprocessing.h @@ -24,7 +24,12 @@ #include "edge-impulse-sdk/classifier/postprocessing/ei_performance_calibration.h" #endif +#if EI_CLASSIFIER_OBJECT_TRACKING_ENABLED +#include "edge-impulse-sdk/classifier/postprocessing/ei_object_tracking.h" +#endif + #if EI_CLASSIFIER_OBJECT_COUNTING_ENABLED +#include "edge-impulse-sdk/classifier/postprocessing/ei_object_tracking.h" #include "edge-impulse-sdk/classifier/postprocessing/ei_object_counting.h" #endif @@ -33,10 +38,11 @@ extern "C" EI_IMPULSE_ERROR init_postprocessing(ei_impulse_handle_t *handle) { return EI_IMPULSE_OUT_OF_MEMORY; } auto impulse = handle->impulse; + handle->post_processing_state = (void **)ei_malloc(impulse->postprocessing_blocks_size * sizeof(void *)); for (size_t i = 0; i < impulse->postprocessing_blocks_size; i++) { - EI_IMPULSE_ERROR res = impulse->postprocessing_blocks[i].init_fn(handle, impulse->postprocessing_blocks[i].config); + EI_IMPULSE_ERROR res = impulse->postprocessing_blocks[i].init_fn(handle, &handle->post_processing_state[i], impulse->postprocessing_blocks[i].config); if (res != EI_IMPULSE_OK) { return res; } @@ -52,12 +58,18 @@ extern "C" EI_IMPULSE_ERROR deinit_postprocessing(ei_impulse_handle_t *handle) { auto impulse = handle->impulse; for (size_t i = 0; i < impulse->postprocessing_blocks_size; i++) { + void* state = NULL; + if (handle->post_processing_state != NULL) { + state = handle->post_processing_state[i]; + } - EI_IMPULSE_ERROR res = impulse->postprocessing_blocks[i].deinit_fn(handle, impulse->postprocessing_blocks[i].config); + EI_IMPULSE_ERROR res = impulse->postprocessing_blocks[i].deinit_fn(state, impulse->postprocessing_blocks[i].config); if (res != EI_IMPULSE_OK) { return res; } } + ei_free(handle->post_processing_state); + handle->post_processing_state = NULL; return EI_IMPULSE_OK; } @@ -71,8 +83,15 @@ extern "C" EI_IMPULSE_ERROR run_postprocessing(ei_impulse_handle_t *handle, auto impulse = handle->impulse; for (size_t i = 0; i < impulse->postprocessing_blocks_size; i++) { + void* state = NULL; + if (handle->post_processing_state != NULL) { + state = handle->post_processing_state[i]; + } - EI_IMPULSE_ERROR res = impulse->postprocessing_blocks[i].postprocess_fn(handle, result, impulse->postprocessing_blocks[i].config, debug); + EI_IMPULSE_ERROR res = impulse->postprocessing_blocks[i].postprocess_fn(handle, + result, + impulse->postprocessing_blocks[i].config, + state); if (res != EI_IMPULSE_OK) { return res; } diff --git a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_postprocessing_types.h b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_postprocessing_common.h similarity index 59% rename from edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_postprocessing_types.h rename to edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_postprocessing_common.h index 7486d2a..16a1b62 100644 --- a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_postprocessing_types.h +++ b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/ei_postprocessing_common.h @@ -15,16 +15,19 @@ * SPDX-License-Identifier: Apache-2.0 */ -#ifndef EI_POSTPROCESSING_TYPES_H -#define EI_POSTPROCESSING_TYPES_H +#ifndef EI_POSTPROCESSING_COMMON_H +#define EI_POSTPROCESSING_COMMON_H #include "edge-impulse-sdk/classifier/ei_model_types.h" -EI_IMPULSE_ERROR init_perfcal(ei_impulse_handle_t *handle, void *config); -EI_IMPULSE_ERROR deinit_perfcal(ei_impulse_handle_t *handle, void *config); -EI_IMPULSE_ERROR process_perfcal(ei_impulse_handle_t *handle, - ei_impulse_result_t *result, - void *config, - bool debug); +int16_t get_block_number(ei_impulse_handle_t *handle, void *init_func) +{ + for (size_t i = 0; i < handle->impulse->postprocessing_blocks_size; i++) { + if (handle->impulse->postprocessing_blocks[i].init_fn == init_func) { + return i; + } + } + return -1; +} -#endif // EI_POSTPROCESSING_TYPES_H \ No newline at end of file +#endif // EI_POSTPROCESSING_COMMON_H \ No newline at end of file diff --git a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/tinyEKF/LICENSE.md b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/tinyEKF/LICENSE.md new file mode 100644 index 0000000..af37c3d --- /dev/null +++ b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/tinyEKF/LICENSE.md @@ -0,0 +1,22 @@ +TinyEKF + +Copyright (c) Simon D. Levy + +All rights reserved. + +MIT License + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the ""Software""), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies +of the Software, and to permit persons to whom the Software is furnished to do +so, subject to the following conditions: The above copyright notice and this +permission notice shall be included in all copies or substantial portions of +the Software. THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO +EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES +OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +DEALINGS IN THE SOFTWARE. diff --git a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/tinyEKF/tinyekf.hpp b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/tinyEKF/tinyekf.hpp new file mode 100644 index 0000000..cec8447 --- /dev/null +++ b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/tinyEKF/tinyekf.hpp @@ -0,0 +1,496 @@ +/* + * Extended Kalman Filter for embedded processors + * + * Copyright (C) 2024 Simon D. Levy + * + * MIT License + */ + +#pragma once + +#include +#include +#include +#include + +template +void print_arr(T *arr, int m, int n, const char *name = "arr") { +// verbose debug +#if EI_LOG_LEVEL == 5 + ei_printf("%s:\n", name); + for (int i = 0; i < m; i++) { + for (int j = 0; j < n; j++) { + ei_printf("[%d][%d] = %g ", i, j, arr[i * n + j]); + } + ei_printf("\n"); + } + ei_printf("\n"); +#endif +} + +class TinyEKF { +public: + TinyEKF(const float* x0, uint32_t EKF_N, uint32_t EKF_M, + float dt = 0.1, + float *u = nullptr, + float process_noise_scale = 0.1, + float observation_noise_scale=0.1) +{ + // set private variables + this->EKF_N = EKF_N; + this->EKF_M = EKF_M; + this->dt = dt; + + x = new float[this->EKF_N]; + memset(x, 0, sizeof(float) * this->EKF_N); + // x is the state + x[0] = x0[0]; + x[1] = x0[1]; + x[2] = x0[0]; + x[3] = x0[1]; + + // print init x + print_arr(x, 1, this->EKF_N, "init x"); + + // F is the state transition model + // self.F = np.array( + // [[1, 0, self.dt, 0], + // [0, 1, 0, self.dt], + // [0, 0, 1, 0], + // [0, 0, 0, 1]] + // ) + + F = new float[16]; + memset(F, 0, sizeof(float) * 16); + for (int i = 0; i < 4; ++i) { + for (int j = 0; j < 4; ++j) { + F[i * 4 + j] = (i == j) ? 1 : 0; + } + } + F[2] = F[7] = this->dt; + + // print F + print_arr(F, 4, 4, "init F"); + + // H is the observation model + H = new float[8]; + memset(H, 0, sizeof(float) * 8); + + H[0] = H[5] = 1; + + // print H + print_arr(H, 2, 4, "init H"); + + // Q is the covariance of the process noise + Q = new float[16]; + memset(Q, 0, sizeof(float) * 16); + + // self.Q = ( + // np.array( + // [ + // [(self.dt**4) / 4, 0, (self.dt**3) / 2, 0], + // [0, (self.dt**4) / 4, 0, (self.dt**3) / 2], + // [(self.dt**3) / 2, 0, self.dt**2, 0], + // [0, (self.dt**3) / 2, 0, self.dt**2], + // ] + // ) + // * process_noise_scale**2 + // ) + + Q[0] = Q[5] = pow(dt, 4) / 4; + Q[2] = Q[7] = Q[8] = Q[13] = pow(dt, 3) / 2; + Q[10] = Q[15] = pow(dt, 2); + + for (int i = 0; i < 4; ++i) { + for (int j = 0; j < 4; ++j) { + Q[i * 4 + j] = Q[i * 4 + j] * pow(process_noise_scale, 2); + } + } + + // print Q + print_arr(Q, 4, 4, "init Q"); + + // R is the covariance of the observation noise + R = new float[4]; + memset(R, 0, sizeof(float) * 4); + + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 2; ++j) { + R[i * 2 + j] = (i == j) ? (pow(observation_noise_scale, 2)) : 0; + } + } + // print R + print_arr(R, 2, 2, "init R"); + + // control-input mode + // self.B = np.array( + // [[(self.dt**2) / 2, 0], + // [0, (self.dt**2) / 2], + // [self.dt, 0], + // [0, self.dt]] + // ) + + B = new float[this->EKF_N * this->EKF_N * 2]; + memset(B, 0, sizeof(float) * this->EKF_N * this->EKF_N * 2); + B[0] = B[3] = (dt * dt) / 2; + B[4] = B[7] = dt; + + if (u == nullptr) { + u = new float[2]; + u[0] = u[1] = 0.1; + } + this->u = u; + + // P is the predict / update transition + P = new float[16]; + memset(P, 0, sizeof(float) * 16); + + for (int i = 0; i < 4; ++i) { + for (int j = 0; j < 4; ++j) { + P[i * 4 + j] = (i == j) ? 1 : 0; + } + } + + // print P + print_arr(P, 4, 4, "init P"); + } + + ~TinyEKF() { + delete[] x; + delete[] P; + delete[] Q; + delete[] F; + delete[] H; + delete[] R; + delete[] B; + delete[] u; + } + + void predict(const float *fx); + bool update(const float *z, const float *hx); + float *x; +private: + uint32_t EKF_N; + uint32_t EKF_M; + + float *P; + float *Q; + float *F; + float *H; + float *R; + + float *B; + float *u; + float dt; + + void update_step3(float *GH); + + /// @private + static void _mulmat( + const float * a, + const float * b, + float * c, + const int arows, + const int acols, + const int bcols) + { + for (int i=0; i= 0; k--) { + sum -= a[i*n+k] * a[j*n+k]; + } + if (i == j) { + if (sum <= 0) { + return 1; /* error */ + } + p[i] = sqrt(sum); + } + else { + a[j*n+i] = sum / p[i]; + } + } + } + + return 0; // success:w + } + + /// @private + static int _choldcsl(const float * A, float * a, float * p, const int n) + { + for (int i = 0; i < n; i++) { + for (int j = 0; j < n; j++) { + a[i*n+j] = A[i*n+j]; + } + } + if (_choldc1(a, p, n)) { + return 1; + } + for (int i = 0; i < n; i++) { + a[i*n+i] = 1 / p[i]; + for (int j = i + 1; j < n; j++) { + float sum = 0; + for (int k = i; k < j; k++) { + sum -= a[j*n+k] * a[k*n+i]; + } + a[j*n+i] = sum / p[j]; + } + } + + return 0; // success + } + + /// @private + static int _cholsl(const float * A, float * a, float * p, const int n) + { + if (_choldcsl(A,a,p,n)) { + return 1; + } + + for (int i = 0; i < n; i++) { + for (int j = i + 1; j < n; j++) { + a[i*n+j] = 0.0; + } + } + for (int i = 0; i < n; i++) { + a[i*n+i] *= a[i*n+i]; + for (int k = i + 1; k < n; k++) { + a[i*n+i] += a[k*n+i] * a[k*n+i]; + } + for (int j = i + 1; j < n; j++) { + for (int k = j; k < n; k++) { + a[i*n+j] += a[k*n+i] * a[k*n+j]; + } + } + } + for (int i = 0; i < n; i++) { + for (int j = 0; j < i; j++) { + a[i*n+j] = a[j*n+i]; + } + } + + return 0; // success + } + + /// @private + static void _addvec( + const float * a, const float * b, float * c, const int n) + { + for (int j=0; jB, this->u, Bu, 4, 2, 1); + + // print Bu + print_arr(Bu, 4, 1, "Bu"); + + // print x before + print_arr(this->x, 1, 4, "x before"); + + float Fx[8]; + _mulmat(this->F, this->x, Fx, 4, 4, 2); + + // print Fx + print_arr(Fx, 4, 2, "Fx"); + // print x after + print_arr(this->x, 1, 4, "x after"); + + //_addmat(Fx, Bu, this->x, 4, 1); + this->x[0] = Fx[0] + Bu[0]; + this->x[1] = Fx[1] + Bu[1]; + this->x[2] = Fx[2] + Bu[0]; + this->x[3] = Fx[3] + Bu[1]; + this->x[4] = Fx[4] + Bu[2]; + this->x[5] = Fx[5] + Bu[3]; + this->x[6] = Fx[6] + Bu[2]; + this->x[7] = Fx[7] + Bu[3]; + + // this is the formula for the next part + // self.P_pre = np.dot(F, self.P_post).dot(F.T) + Q + + // np.dot(F, self.P_post) + float FP[16]; + _mulmat(F, P, FP, 4, 4, 4); + // print FP + print_arr(FP, 4, 4, "FP"); + + // F.T + float Ft[16]; + _transpose(F, Ft, 4, 4); + + // .dot(F.T) + float FPFt[16]; + _mulmat(FP, Ft, FPFt, 4, 4, 4); + + // + Q + _addmat(FPFt, Q, P, 4, 4); + + // print P + print_arr(P, 4, 4, "P"); +} + +bool TinyEKF::update(const float *z, const float *hx) { + + float Ht[8]; + _transpose(H, Ht, 2, 4); + + // print Ht + print_arr(Ht, 4, 2, "Ht"); + + float PHt[8]; + _mulmat(P, Ht, PHt, 4, 4, 2); + + float HP[8]; + _mulmat(H, P, HP, 2, 4, 4); + + float HpHt[4]; + _mulmat(HP, Ht, HpHt, 2, 4, 2); + + float HpHtR[4]; + _addmat(HpHt, R, HpHtR, 2, 2); + + float HPHtRinv[4]; + if (!invert(HpHtR, HPHtRinv, 2)) { + return false; + } + + float G[8]; + _mulmat(PHt, HPHtRinv, G, 4, 2, 2); + + // print G + print_arr(G, 4, 2, "G"); + + // print x + print_arr(this->x, 1, 4, "x in update"); + + // we get hx as an argument to function + float z_hx[4]; + //_sub(z, Hx, z_hx, 2); + z_hx[0] = z[0] - hx[0]; + z_hx[1] = z[1] - hx[1]; + z_hx[2] = z[0] - hx[0]; + z_hx[3] = z[1] - hx[1]; + + // print z_hx + print_arr(z_hx, 2, 2, "z_hx"); + + float Gz_hx[8]; + _mulmat(G, z_hx, Gz_hx, 4, 2, 2); + + // // print Gz_hx + print_arr(Gz_hx, 4, 2, "Gz_hx"); + + _addvec(this->x, Gz_hx, this->x, 8); + + float GH[16]; + _mulmat(G, H, GH, 4, 2, 4); + update_step3(GH); + return true; +} + +/// @private +void TinyEKF::update_step3(float *GH) +{ + _negate(GH, 4, 4); + _addeye(GH, 4); + + float GHP[16]; + _mulmat(GH, P, GHP, 4, 4, 4); + memcpy(P, GHP, 16 * sizeof(float)); +} \ No newline at end of file diff --git a/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/tinyEKF/tinyekf_custom.h b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/tinyEKF/tinyekf_custom.h new file mode 100644 index 0000000..5e8aa98 --- /dev/null +++ b/edgeimpulse/edge-impulse-sdk/classifier/postprocessing/tinyEKF/tinyekf_custom.h @@ -0,0 +1,119 @@ +/** + * Custom EKF methods + * + * Copyright (C) 2024 Simon D. Levy + * + * MIT License + */ + +/// @private +static void outer( + const _float_t x[EKF_N], + const _float_t y[EKF_N], + _float_t a[EKF_N*EKF_N]) +{ + for (int i=0; iP, AP, EKF_N, EKF_N, EKF_N); + + _float_t At[EKF_N*EKF_N] = {}; + _transpose(A, At, EKF_N, EKF_N); + + _mulmat(AP, At, ekf->P, EKF_N, EKF_N, EKF_N); +} + +/** + * Enforces symmetry of the covariance matrix and ensures that the its values stay bounded + * @param ekf pointer to an ekf_t structure + * @param minval minimum covariance bound + * @param maxval maximum covariance bound + * + */ +static void ekf_custom_cleanup_covariance( + ekf_t * ekf, const float minval, const float maxval) +{ + + for (int i=0; iP[i*EKF_N+j] + ekf->P[EKF_N*j+i]) / 2; + + ekf->P[i*EKF_N+j] = ekf->P[j*EKF_N+i] = + pval > maxval ? maxval : + (i==j && pval < minval) ? minval : + pval; + } + } +} + +/** + * Updates the EKF with a single scalar observation + * @param ekf pointer to an ekf_t structure + * @param z the observation + * @param hx the predicted value + * @param h one column of the sensor-function Jacobian matrix H + * @param r one entry in the measurement-noise matrix R + * + */ +static void ekf_custom_scalar_update( + ekf_t * ekf, + const _float_t z, + const _float_t hx, + const _float_t h[EKF_N], + const _float_t r) +{ + (void)ekf_update; + + // G_k = P_k H^T_k (H_k P_k H^T_k + R)^{-1} + _float_t ph[EKF_N] = {}; + _mulvec(ekf->P, h, ph, EKF_N, EKF_N); + const _float_t hphtr_inv = 1 / (r + dot(h, ph)); + _float_t g[EKF_N] = {}; + for (int i=0; ix[i] += g[i] * (z - hx); + } + + // P_k = (I - G_k H_k) P_k$ + _float_t GH[EKF_N*EKF_N]; + outer(g, h, GH); + ekf_update_step3(ekf, GH); + + // Does this belong here, or in caller? + for (int i=0; iP[i*EKF_N+j] += r * g[i] * g[j]; + } + } +} diff --git a/edgeimpulse/edge-impulse-sdk/dsp/returntypes.h b/edgeimpulse/edge-impulse-sdk/dsp/returntypes.h index d7906ac..2ef7644 100644 --- a/edgeimpulse/edge-impulse-sdk/dsp/returntypes.h +++ b/edgeimpulse/edge-impulse-sdk/dsp/returntypes.h @@ -5,11 +5,11 @@ /** * @defgroup ei_returntypes Return codes - * + * * Return codes for Edge Impulse functions. - * + * * **Source**: [dsp/returntypes.h](https://github.com/edgeimpulse/inferencing-sdk-cpp/blob/master/dsp/returntypes.h) - * + * * @addtogroup ei_returntypes * @{ */ @@ -43,6 +43,7 @@ typedef enum { EI_IMPULSE_MEMRYX_ERROR = -26, /**< Error in Memryx inference engine */ EI_IMPULSE_DEVICE_INIT_ERROR = -27, /**< Device initialization (usually NPU accelerator) failed */ EI_IMPULSE_LAST_LAYER_NOT_SUPPORTED = -28, /**< The last layer is not supported by inferencing engine. */ + EI_IMPULSE_POSTPROCESSING_ERROR = -29, /**< Error in post-processing portion of impulse */ } EI_IMPULSE_ERROR; #endif // _EIDSP_RETURN_TYPES_H_ diff --git a/edgeimpulse/edge-impulse-sdk/porting/ambiq/ei_classifier_porting.cpp b/edgeimpulse/edge-impulse-sdk/porting/ambiq/ei_classifier_porting.cpp index 025cf8e..8e67fe4 100644 --- a/edgeimpulse/edge-impulse-sdk/porting/ambiq/ei_classifier_porting.cpp +++ b/edgeimpulse/edge-impulse-sdk/porting/ambiq/ei_classifier_porting.cpp @@ -94,6 +94,19 @@ void ei_putchar(char c) ei_printf("%c", c); } +char ei_getchar(void) +{ + char c = 0xFF; + + c = ei_get_serial_byte(false); + + if (c == 0xFF ) { + return 0; //weird ei convention + } + + return c; +} + #if defined(__cplusplus) && EI_C_LINKAGE == 1 extern "C" #endif