-
Notifications
You must be signed in to change notification settings - Fork 0
/
experiments_cs_script_bert.py
29 lines (25 loc) · 1.28 KB
/
experiments_cs_script_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import pandas as pd
from utils_data import create_calibrated_df
from utils_mturk import get_list_id_within_doc, prepare_df_for_evaluation, perform_evaluation
# data preparation
df_results_mturk = pd.read_csv('data/pairwise_race_cs.csv')
# Single models
for random_seed in [0, 3, 42]:
df_predictions = create_calibrated_df(['output_bert_seed%d_test.csv' % random_seed])
list_id_within_doc = get_list_id_within_doc(df_predictions)
df_predictions['id'] = list_id_within_doc
df_for_evaluation = prepare_df_for_evaluation(df_results_mturk, df_predictions)
output_filename = 'output/pairwise_race_cs_bert_%d_test.txt' % random_seed
output_file = open(output_filename, "w")
perform_evaluation(df_for_evaluation, output_file=output_file)
output_file.close()
# ensemble
df_predictions = create_calibrated_df([
'output_bert_seed0_test.csv', 'output_bert_seed3_test.csv', 'output_bert_seed42_test.csv'])
list_id_within_doc = get_list_id_within_doc(df_predictions)
df_predictions['id'] = list_id_within_doc
df_for_evaluation = prepare_df_for_evaluation(df_results_mturk, df_predictions)
output_filename = 'output/pairwise_race_cs_bert_ensemble_test.txt'
output_file = open(output_filename, "w")
perform_evaluation(df_for_evaluation, output_file=output_file)
output_file.close()