The count-and-say sequence is a sequence of digit strings defined by the recursive formula:
countAndSay(1) = "1"
countAndSay(n)
is the way you would "say" the digit string fromcountAndSay(n-1)
, which is then converted into a different digit string.
To determine how you "say" a digit string, split it into the minimal number of groups so that each group is a contiguous section all of the same character. Then for each group, say the number of characters, then say the character. To convert the saying into a digit string, replace the counts with a number and concatenate every saying.
For example, the saying and conversion for digit string "3322251"
:
Given a positive integer n
, return the nth
term of the count-and-say sequence.
Example 1:
Input: n = 1 Output: "1" Explanation: This is the base case.
Example 2:
Input: n = 4 Output: "1211" Explanation: countAndSay(1) = "1" countAndSay(2) = say "1" = one 1 = "11" countAndSay(3) = say "11" = two 1's = "21" countAndSay(4) = say "21" = one 2 + one 1 = "12" + "11" = "1211"
Constraints:
1 <= n <= 30
class Solution:
def countAndSay(self, n: int) -> str:
s = '1'
for _ in range(n - 1):
i = 0
t = []
while i < len(s):
j = i
while j < len(s) and s[j] == s[i]:
j += 1
t.append(str(j - i))
t.append(str(s[i]))
i = j
s = ''.join(t)
return s
class Solution {
public String countAndSay(int n) {
String s = "1";
while (--n > 0) {
StringBuilder t = new StringBuilder();
for (int i = 0; i < s.length();) {
int j = i;
while (j < s.length() && s.charAt(j) == s.charAt(i)) {
++j;
}
t.append((j - i) + "");
t.append(s.charAt(i));
i = j;
}
s = t.toString();
}
return s;
}
}
class Solution {
public:
string countAndSay(int n) {
string s = "1";
while (--n)
{
string t = "";
for (int i = 0; i < s.size();)
{
int j = i;
while (j < s.size() && s[j] == s[i]) ++j;
t += to_string(j - i);
t += s[i];
i = j;
}
s = t;
}
return s;
}
};
func countAndSay(n int) string {
s := "1"
for k := 0; k < n-1; k++ {
t := &strings.Builder{}
i := 0
for i < len(s) {
j := i
for j < len(s) && s[j] == s[i] {
j++
}
t.WriteString(strconv.Itoa(j - i))
t.WriteByte(s[i])
i = j
}
s = t.String()
}
return s
}