Skip to content

Latest commit

 

History

History
131 lines (101 loc) · 3.59 KB

File metadata and controls

131 lines (101 loc) · 3.59 KB

English Version

题目描述

给定一个 × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

 

示例 1:

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]

示例 2:

输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

示例 3:

输入:matrix = [[1]]
输出:[[1]]

示例 4:

输入:matrix = [[1,2],[3,4]]
输出:[[3,1],[4,2]]

 

提示:

  • matrix.length == n
  • matrix[i].length == n
  • 1 <= n <= 20
  • -1000 <= matrix[i][j] <= 1000

解法

Python3

class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        s, n = 0, len(matrix)
        while s < (n >> 1):
            e = n - s - 1
            for i in range(s, e):
                t = matrix[i][e]
                matrix[i][e] = matrix[s][i]
                matrix[s][i] = matrix[n - i - 1][s]
                matrix[n - i - 1][s] = matrix[e][n - i - 1]
                matrix[e][n - i - 1] = t
            s += 1

Java

class Solution {
    public void rotate(int[][] matrix) {
        int s = 0, n = matrix.length;
        while (s < (n >> 1)) {
            int e = n - s - 1;
            for (int i = s; i < e; ++i) {
                int t = matrix[i][e];
                matrix[i][e] = matrix[s][i];
                matrix[s][i] = matrix[n - i - 1][s];
                matrix[n - i - 1][s] = matrix[e][n - i - 1];
                matrix[e][n - i - 1] = t;
            }
            ++s;
        }
    }
}

TypeScript

/**
 Do not return anything, modify matrix in-place instead.
 */
function rotate(matrix: number[][]): void {
    let n = matrix[0].length;
    for (let i = 0; i < Math.floor(n / 2); i++) {
        for (let j = 0; j < Math.floor((n + 1) / 2); j++) {
            let tmp = matrix[i][j];
            matrix[i][j] = matrix[n - 1 - j][i];
            matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
            matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
            matrix[j][n - 1 - i] = tmp;
        }
    }
}

...