给你二叉搜索树的根节点 root
,该树中的两个节点被错误地交换。请在不改变其结构的情况下,恢复这棵树。
进阶:使用 O(n) 空间复杂度的解法很容易实现。你能想出一个只使用常数空间的解决方案吗?
示例 1:
输入:root = [1,3,null,null,2] 输出:[3,1,null,null,2] 解释:3 不能是 1 左孩子,因为 3 > 1 。交换 1 和 3 使二叉搜索树有效。
示例 2:
输入:root = [3,1,4,null,null,2] 输出:[2,1,4,null,null,3] 解释:2 不能在 3 的右子树中,因为 2 < 3 。交换 2 和 3 使二叉搜索树有效。
提示:
- 树上节点的数目在范围
[2, 1000]
内 -231 <= Node.val <= 231 - 1
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def recoverTree(self, root: Optional[TreeNode]) -> None:
"""
Do not return anything, modify root in-place instead.
"""
def dfs(root):
nonlocal prev, first, second
if root:
dfs(root.left)
if prev:
if first is None and root.val < prev.val:
first = prev
if first and root.val < prev.val:
second = root
prev = root
dfs(root.right)
prev = first = second = None
dfs(root)
first.val, second.val = second.val, first.val
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private TreeNode prev;
private TreeNode first;
private TreeNode second;
public void recoverTree(TreeNode root) {
dfs(root);
int t = first.val;
first.val = second.val;
second.val = t;
}
private void dfs(TreeNode root) {
if (root == null) {
return;
}
dfs(root.left);
if (prev != null) {
if (first == null && prev.val > root.val) {
first = prev;
}
if (first != null && prev.val > root.val) {
second = root;
}
}
prev = root;
dfs(root.right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* prev;
TreeNode* first;
TreeNode* second;
void recoverTree(TreeNode* root) {
dfs(root);
swap(first->val, second->val);
}
void dfs(TreeNode* root) {
if (!root) return;
dfs(root->left);
if (prev)
{
if (!first && prev->val > root->val) first = prev;
if (first && prev->val > root->val) second = root;
}
prev = root;
dfs(root->right);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func recoverTree(root *TreeNode) {
var prev *TreeNode
var first *TreeNode
var second *TreeNode
var dfs func(root *TreeNode)
dfs = func(root *TreeNode) {
if root == nil {
return
}
dfs(root.Left)
if prev != nil {
if first == nil && prev.Val > root.Val {
first = prev
}
if first != nil && prev.Val > root.Val {
second = root
}
}
prev = root
dfs(root.Right)
}
dfs(root)
first.Val, second.Val = second.Val, first.Val
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private TreeNode prev, first, second;
public void RecoverTree(TreeNode root) {
dfs(root);
int t = first.val;
first.val = second.val;
second.val = t;
}
private void dfs(TreeNode root) {
if (root != null)
{
dfs(root.left);
if (prev != null)
{
if (first == null && prev.val > root.val)
{
first = prev;
}
if (first != null && prev.val > root.val)
{
second = root;
}
}
prev = root;
dfs(root.right);
}
}
}