Given an integer n
, return true
if it is a power of two. Otherwise, return false
.
An integer n
is a power of two, if there exists an integer x
such that n == 2x
.
Example 1:
Input: n = 1 Output: true Explanation: 20 = 1
Example 2:
Input: n = 16 Output: true Explanation: 24 = 16
Example 3:
Input: n = 3 Output: false
Example 4:
Input: n = 4 Output: true
Example 5:
Input: n = 5 Output: false
Constraints:
-231 <= n <= 231 - 1
Follow up: Could you solve it without loops/recursion?
class Solution:
def isPowerOfTwo(self, n: int) -> bool:
return n > 0 and (n & (n - 1)) == 0
lowbit:
class Solution:
def isPowerOfTwo(self, n: int) -> bool:
return n > 0 and n == n & (-n)
class Solution {
public boolean isPowerOfTwo(int n) {
return n > 0 && (n & (n - 1)) == 0;
}
}
lowbit:
class Solution {
public boolean isPowerOfTwo(int n) {
return n > 0 && n == (n & (-n));
}
}
class Solution {
public:
bool isPowerOfTwo(int n) {
return n > 0 && (n & (n - 1)) == 0;
}
};
class Solution {
public:
bool isPowerOfTwo(int n) {
return n > 0 && n == (n & (-n));
}
};
/**
* @param {number} n
* @return {boolean}
*/
var isPowerOfTwo = function (n) {
return n > 0 && (n & (n - 1)) == 0;
};
lowbit:
/**
* @param {number} n
* @return {boolean}
*/
var isPowerOfTwo = function (n) {
return n > 0 && n == (n & -n);
};
func isPowerOfTwo(n int) bool {
return n > 0 && (n&(n-1)) == 0
}
lowbit:
func isPowerOfTwo(n int) bool {
return n > 0 && n == (n&(-n))
}
function isPowerOfTwo(n: number): boolean {
return n > 0 && (n & (n - 1)) == 0;
}
lowbit:
function isPowerOfTwo(n: number): boolean {
return n > 0 && n == (n & -n);
}