你和你的朋友,两个人一起玩 Nim 游戏:
- 桌子上有一堆石头。
- 你们轮流进行自己的回合,你作为先手。
- 每一回合,轮到的人拿掉 1 - 3 块石头。
- 拿掉最后一块石头的人就是获胜者。
假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n
的情况下赢得游戏。如果可以赢,返回 true
;否则,返回 false
。
示例 1:
输入:n = 4
输出:false
解释:如果堆中有 4 块石头,那么你永远不会赢得比赛;
因为无论你拿走 1 块、2 块 还是 3 块石头,最后一块石头总是会被你的朋友拿走。
示例 2:
输入:n = 1 输出:true
示例 3:
输入:n = 2 输出:true
提示:
1 <= n <= 231 - 1
第一个得到 4 的倍数(即 n % 4 == 0)的将会输掉比赛。
证明:
- 当
n == 4
,无论第一个玩家选择 1/2/3 哪个数字,第二个玩家总能选择剩下的数字,第一个玩家将会输掉比赛。 - 当
4 < n < 8
,即 (n = 5,6,7),第一个玩家可以相应地将数字减少为 4,那么 4 这个死亡数字给到了第二个玩家,第二个玩家将会输掉比赛。 - 当
n == 8
,无论第一个玩家选择 1/2/3 哪个数字,都会把4 < n < 8
的数字留给第二个,第一个玩家将会输掉比赛。 - ...
- 依次类推,当玩家拿到 n 这个数字,且 n 能被 4 整除,即
n % 4 == 0
,他将会输掉比赛,否则他将赢得比赛。
class Solution:
def canWinNim(self, n: int) -> bool:
return n % 4 != 0
class Solution {
public boolean canWinNim(int n) {
return n % 4 != 0;
}
}
function canWinNim(n: number): boolean {
return n % 4 != 0;
}
class Solution {
public:
bool canWinNim(int n) {
return n % 4 != 0;
}
};
func canWinNim(n int) bool {
return n%4 != 0
}