Given a positive integer num, write a function which returns True if num is a perfect square else False.
Follow up: Do not use any built-in library function such as sqrt
.
Example 1:
Input: num = 16 Output: true
Example 2:
Input: num = 14 Output: false
Constraints:
1 <= num <= 2^31 - 1
class Solution:
def isPerfectSquare(self, num: int) -> bool:
left, right = 1, num
while left < right:
mid = (left + right) >> 1
if mid * mid >= num:
right = mid
else:
left = mid + 1
return left * left == num
class Solution:
def isPerfectSquare(self, num: int) -> bool:
i = 1
while num > 0:
num -= i
i += 2
return num == 0
class Solution {
public boolean isPerfectSquare(int num) {
long left = 1, right = num;
while (left < right) {
long mid = (left + right) >>> 1;
if (mid * mid >= num) {
right = mid;
} else {
left = mid + 1;
}
}
return left * left == num;
}
}
class Solution {
public boolean isPerfectSquare(int num) {
for (int i = 1; num > 0; i += 2) {
num -= i;
}
return num == 0;
}
}
class Solution {
public:
bool isPerfectSquare(int num) {
long left = 1, right = num;
while (left < right)
{
long mid = left + right >> 1;
if (mid * mid >= num) right = mid;
else left = mid + 1;
}
return left * left == num;
}
};
class Solution {
public:
bool isPerfectSquare(int num) {
for (int i = 1; num > 0; i += 2) num -= i;
return num == 0;
}
};
func isPerfectSquare(num int) bool {
left, right := 1, num
for left < right {
mid := (left + right) >> 1
if mid*mid >= num {
right = mid
} else {
left = mid + 1
}
}
return left*left == num
}
func isPerfectSquare(num int) bool {
for i := 1; num > 0; i += 2 {
num -= i
}
return num == 0
}