Skip to content

Latest commit

 

History

History
98 lines (65 loc) · 3.54 KB

File metadata and controls

98 lines (65 loc) · 3.54 KB

English Version

题目描述

请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。

实现 LFUCache 类:

  • LFUCache(int capacity) - 用数据结构的容量 capacity 初始化对象
  • int get(int key) - 如果键存在于缓存中,则获取键的值,否则返回 -1。
  • void put(int key, int value) - 如果键已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量时,则应该在插入新项之前,使最不经常使用的项无效。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最近最久未使用 的键。

注意「项的使用次数」就是自插入该项以来对其调用 getput 函数的次数之和。使用次数会在对应项被移除后置为 0 。

为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。

当一个键首次插入到缓存中时,它的使用计数器被设置为 1 (由于 put 操作)。对缓存中的键执行 getput 操作,使用计数器的值将会递增。

 

示例:

输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lFUCache = new LFUCache(2);
lFUCache.put(1, 1);   // cache=[1,_], cnt(1)=1
lFUCache.put(2, 2);   // cache=[2,1], cnt(2)=1, cnt(1)=1
lFUCache.get(1);      // 返回 1
                      // cache=[1,2], cnt(2)=1, cnt(1)=2
lFUCache.put(3, 3);   // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
                      // cache=[3,1], cnt(3)=1, cnt(1)=2
lFUCache.get(2);      // 返回 -1(未找到)
lFUCache.get(3);      // 返回 3
                      // cache=[3,1], cnt(3)=2, cnt(1)=2
lFUCache.put(4, 4);   // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
                      // cache=[4,3], cnt(4)=1, cnt(3)=2
lFUCache.get(1);      // 返回 -1(未找到)
lFUCache.get(3);      // 返回 3
                      // cache=[3,4], cnt(4)=1, cnt(3)=3
lFUCache.get(4);      // 返回 4
                      // cache=[3,4], cnt(4)=2, cnt(3)=3

 

提示:

  • 0 <= capacity, key, value <= 104
  • 最多调用 105getput 方法

 

进阶:你可以为这两种操作设计时间复杂度为 O(1) 的实现吗?

解法

Python3

Java

...