The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1 F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n
, calculate F(n)
.
Example 1:
Input: n = 2 Output: 1 Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3 Output: 2 Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4 Output: 3 Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
0 <= n <= 30
class Solution:
def fib(self, n: int) -> int:
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
class Solution {
public int fib(int n) {
int a = 0, b = 1;
while (n-- > 0) {
int c = a + b;
a = b;
b = c;
}
return a;
}
}
class Solution {
public:
int fib(int n) {
int a = 0, b = 1;
while (n--) {
int c = a + b;
a = b;
b = c;
}
return a;
}
};
func fib(n int) int {
a, b := 0, 1
for i := 0; i < n; i++ {
a, b = b, a+b
}
return a
}
/**
* @param {number} n
* @return {number}
*/
var fib = function (n) {
let a = 0;
let b = 1;
while (n--) {
const c = a + b;
a = b;
b = c;
}
return a;
};