Skip to content

Latest commit

 

History

History
133 lines (104 loc) · 2.16 KB

File metadata and controls

133 lines (104 loc) · 2.16 KB

中文文档

Description

The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,

F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.

Given n, calculate F(n).

 

Example 1:

Input: n = 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.

Example 2:

Input: n = 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.

Example 3:

Input: n = 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.

 

Constraints:

  • 0 <= n <= 30

Solutions

Python3

class Solution:
    def fib(self, n: int) -> int:
        a, b = 0, 1
        for _ in range(n):
            a, b = b, a + b
        return a

Java

class Solution {
    public int fib(int n) {
        int a = 0, b = 1;
        while (n-- > 0) {
            int c = a + b;
            a = b;
            b = c;
        }
        return a;
    }
}

C++

class Solution {
public:
    int fib(int n) {
        int a = 0, b = 1;
        while (n--) {
            int c = a + b;
            a = b;
            b = c;
        }
        return a;
    }
};

Go

func fib(n int) int {
	a, b := 0, 1
	for i := 0; i < n; i++ {
		a, b = b, a+b
	}
	return a
}

JavaScript

/**
 * @param {number} n
 * @return {number}
 */
var fib = function (n) {
    let a = 0;
    let b = 1;
    while (n--) {
        const c = a + b;
        a = b;
        b = c;
    }
    return a;
};

...