Given a node
in a binary search tree, return the in-order successor of that node in the BST. If that node has no in-order successor, return null
.
The successor of a node
is the node with the smallest key greater than node.val
.
You will have direct access to the node but not to the root of the tree. Each node will have a reference to its parent node. Below is the definition for Node
:
class Node { public int val; public Node left; public Node right; public Node parent; }
Example 1:
Input: tree = [2,1,3], node = 1 Output: 2 Explanation: 1's in-order successor node is 2. Note that both the node and the return value is of Node type.
Example 2:
Input: tree = [5,3,6,2,4,null,null,1], node = 6 Output: null Explanation: There is no in-order successor of the current node, so the answer is null.
Example 3:
Input: tree = [15,6,18,3,7,17,20,2,4,null,13,null,null,null,null,null,null,null,null,9], node = 15 Output: 17
Example 4:
Input: tree = [15,6,18,3,7,17,20,2,4,null,13,null,null,null,null,null,null,null,null,9], node = 13 Output: 15
Example 5:
Input: tree = [0], node = 0 Output: null
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -105 <= Node.val <= 105
- All Nodes will have unique values.
Follow up: Could you solve it without looking up any of the node's values?
"""
# Definition for a Node.
class Node:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
self.parent = None
"""
class Solution:
def inorderSuccessor(self, node: 'Node') -> 'Optional[Node]':
if node.right:
node = node.right
while node.left:
node = node.left
return node
while node.parent and node == node.parent.right:
node = node.parent
return node.parent
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node parent;
};
*/
class Solution {
public Node inorderSuccessor(Node node) {
if (node.right != null) {
node = node.right;
while (node.left != null) {
node = node.left;
}
return node;
}
while (node.parent != null && node == node.parent.right) {
node = node.parent;
}
return node.parent;
}
}
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* parent;
};
*/
class Solution {
public:
Node* inorderSuccessor(Node* node) {
if (node->right)
{
node = node->right;
while (node->left) node = node->left;
return node;
}
while (node->parent && node == node->parent->right) node = node->parent;
return node->parent;
}
};
/**
* Definition for Node.
* type Node struct {
* Val int
* Left *Node
* Right *Node
* Parent *Node
* }
*/
func inorderSuccessor(node *Node) *Node {
if node.Right != nil {
node = node.Right
for node.Left != nil {
node = node.Left
}
return node
}
for node.Parent != nil && node == node.Parent.Right {
node = node.Parent
}
return node.Parent
}
/**
* // Definition for a Node.
* function Node(val) {
* this.val = val;
* this.left = null;
* this.right = null;
* this.parent = null;
* };
*/
/**
* @param {Node} node
* @return {Node}
*/
var inorderSuccessor = function (node) {
if (node.right) {
node = node.right;
while (node.left) node = node.left;
return node;
}
while (node.parent && node == node.parent.right) node = node.parent;
return node.parent;
};