Skip to content

Latest commit

 

History

History
200 lines (149 loc) · 3.65 KB

File metadata and controls

200 lines (149 loc) · 3.65 KB

中文文档

Description

You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.

 

Example 1:

Input: amount = 5, coins = [1, 2, 5]

Output: 4

Explanation: there are four ways to make up the amount:

5=5

5=2+2+1

5=2+1+1+1

5=1+1+1+1+1

Example 2:

Input: amount = 3, coins = [2]

Output: 0

Explanation: the amount of 3 cannot be made up just with coins of 2.

Example 3:

Input: amount = 10, coins = [10]

Output: 1

 

Note:

You can assume that

  • 0 <= amount <= 5000
  • 1 <= coin <= 5000
  • the number of coins is less than 500
  • the answer is guaranteed to fit into signed 32-bit integer

Solutions

Dynamic programming.

Complete knapsack problem.

Python3

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [0] * (amount + 1)
        dp[0] = 1
        for coin in coins:
            for j in range(coin, amount + 1):
                dp[j] += dp[j - coin]
        return dp[-1]

Java

class Solution {
    public int change(int amount, int[] coins) {
        int m = coins.length;
        int[][] dp = new int[m + 1][amount + 1];
        dp[0][0] = 1;
        for (int i = 1; i <= m; ++i) {
            for (int j = 0; j <= amount; ++j) {
                for (int k = 0; k * coins[i - 1] <= j; ++k) {
                    dp[i][j] += dp[i - 1][j - coins[i - 1] * k];
                }
            }
        }
        return dp[m][amount];
    }
}
class Solution {
    public int change(int amount, int[] coins) {
        int m = coins.length;
        int[][] dp = new int[m + 1][amount + 1];
        dp[0][0] = 1;
        for (int i = 1; i <= m; ++i) {
            int v = coins[i - 1];
            for (int j = 0; j <= amount; ++j) {
                dp[i][j] = dp[i - 1][j];
                if (j >= v) {
                    dp[i][j] += dp[i][j - v];
                }
            }
        }
        return dp[m][amount];
    }
}
class Solution {
    public int change(int amount, int[] coins) {
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        for (int coin : coins) {
            for (int j = coin; j <= amount; j++) {
                dp[j] += dp[j - coin];
            }
        }
        return dp[amount];
    }
}

TypeScript

function change(amount: number, coins: number[]): number {
    let dp = new Array(amount + 1).fill(0);
    dp[0] = 1;
    for (let coin of coins) {
        for (let i = coin; i <= amount; ++i) {
            dp[i] += dp[i - coin];
        }
    }
    return dp.pop();
}

Go

func change(amount int, coins []int) int {
	dp := make([]int, amount+1)
	dp[0] = 1
	for _, coin := range coins {
		for j := coin; j <= amount; j++ {
			dp[j] += dp[j-coin]
		}
	}
	return dp[amount]
}

C++

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1);
        dp[0] = 1;
        for (auto coin : coins) {
            for (int j = coin; j <= amount; ++j) {
                dp[j] += dp[j - coin];
            }
        }
        return dp[amount];
    }
};

...