Given an array of integers nums
and an integer k
, return the total number of continuous subarrays whose sum equals to k
.
Example 1:
Input: nums = [1,1,1], k = 2 Output: 2
Example 2:
Input: nums = [1,2,3], k = 3 Output: 2
Constraints:
1 <= nums.length <= 2 * 104
-1000 <= nums[i] <= 1000
-107 <= k <= 107
class Solution:
def subarraySum(self, nums: List[int], k: int) -> int:
counter = Counter({0: 1})
ans = s = 0
for num in nums:
s += num
ans += counter[s - k]
counter[s] += 1
return ans
class Solution {
public int subarraySum(int[] nums, int k) {
Map<Integer, Integer> counter = new HashMap<>();
counter.put(0, 1);
int ans = 0, s = 0;
for (int num : nums) {
s += num;
ans += counter.getOrDefault(s - k, 0);
counter.put(s, counter.getOrDefault(s, 0) + 1);
}
return ans;
}
}
function subarraySum(nums: number[], k: number): number {
let ans = 0,
s = 0;
let counter = new Map();
counter[0] = 1;
for (const num of nums) {
s += num;
ans += counter[s - k] || 0;
counter[s] = (counter[s] || 0) + 1;
}
return ans;
}
class Solution {
public:
int subarraySum(vector<int>& nums, int k) {
unordered_map<int, int> counter;
counter[0] = 1;
int ans = 0, s = 0;
for (int& num : nums)
{
s += num;
ans += counter[s - k];
++counter[s];
}
return ans;
}
};
func subarraySum(nums []int, k int) int {
counter := map[int]int{0: 1}
ans, s := 0, 0
for _, num := range nums {
s += num
ans += counter[s-k]
counter[s]++
}
return ans
}