给定一个二叉树,根节点为第1层,深度为 1。在其第 d
层追加一行值为 v
的节点。
添加规则:给定一个深度值 d
(正整数),针对深度为 d-1
层的每一非空节点 N
,为 N
创建两个值为 v
的左子树和右子树。
将 N
原先的左子树,连接为新节点 v
的左子树;将 N
原先的右子树,连接为新节点 v
的右子树。
如果 d
的值为 1,深度 d - 1 不存在,则创建一个新的根节点 v
,原先的整棵树将作为 v
的左子树。
示例 1:
输入: 二叉树如下所示: 4 / \ 2 6 / \ / 3 1 5 v = 1 d = 2 输出: 4 / \ 1 1 / \ 2 6 / \ / 3 1 5
示例 2:
输入: 二叉树如下所示: 4 / 2 / \ 3 1 v = 1 d = 3 输出: 4 / 2 / \ 1 1 / \ 3 1
注意:
- 输入的深度值 d 的范围是:[1,二叉树最大深度 + 1]。
- 输入的二叉树至少有一个节点。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def addOneRow(self, root: TreeNode, val: int, depth: int) -> TreeNode:
def dfs(root, d):
if root is None:
return
if d == depth - 1:
l = TreeNode(val=val, left=root.left)
r = TreeNode(val=val, right=root.right)
root.left, root.right = l, r
return
dfs(root.left, d + 1)
dfs(root.right, d + 1)
if depth == 1:
return TreeNode(val=val, left=root)
dfs(root, 1)
return root
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int val;
private int depth;
public TreeNode addOneRow(TreeNode root, int val, int depth) {
if (depth == 1) {
return new TreeNode(val, root, null);
}
this.val = val;
this.depth = depth;
dfs(root, 1);
return root;
}
private void dfs(TreeNode root, int d) {
if (root == null) {
return;
}
if (d == depth - 1) {
TreeNode l = new TreeNode(val, root.left, null);
TreeNode r = new TreeNode(val, null, root.right);
root.left = l;
root.right = r;
return;
}
dfs(root.left, d + 1);
dfs(root.right, d + 1);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int val;
int depth;
TreeNode* addOneRow(TreeNode* root, int val, int depth) {
if (depth == 1) return new TreeNode(val, root, nullptr);
this->val = val;
this->depth = depth;
dfs(root, 1);
return root;
}
void dfs(TreeNode* root, int d) {
if (!root) return;
if (d == depth - 1)
{
auto l = new TreeNode(val, root->left, nullptr);
auto r = new TreeNode(val, nullptr, root->right);
root->left = l;
root->right = r;
return;
}
dfs(root->left, d + 1);
dfs(root->right, d + 1);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func addOneRow(root *TreeNode, val int, depth int) *TreeNode {
if depth == 1 {
return &TreeNode{Val: val, Left: root}
}
var dfs func(root *TreeNode, d int)
dfs = func(root *TreeNode, d int) {
if root == nil {
return
}
if d == depth-1 {
l, r := &TreeNode{Val: val, Left: root.Left}, &TreeNode{Val: val, Right: root.Right}
root.Left, root.Right = l, r
return
}
dfs(root.Left, d+1)
dfs(root.Right, d+1)
}
dfs(root, 1)
return root
}