Skip to content

Latest commit

 

History

History
252 lines (179 loc) · 4 KB

File metadata and controls

252 lines (179 loc) · 4 KB

中文文档

Description

Given a binary tree with n nodes, your task is to check if it's possible to partition the tree to two trees which have the equal sum of values after removing exactly one edge on the original tree.

Example 1:

Input:     

    5

   / \

  10 10

    /  \

   2   3



Output: True

Explanation: 

    5

   / 

  10

      

Sum: 15



   10

  /  \

 2    3



Sum: 15

Example 2:

Input:     

    1

   / \

  2  10

    /  \

   2   20



Output: False

Explanation: You can't split the tree into two trees with equal sum after removing exactly one edge on the tree.

Note:

  1. The range of tree node value is in the range of [-100000, 100000].
  2. 1 <= n <= 10000

Solutions

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def checkEqualTree(self, root: TreeNode) -> bool:
        def sum(root):
            if root is None:
                return 0
            l, r = sum(root.left), sum(root.right)
            seen.append(l + r + root.val)
            return seen[-1]

        seen = []
        s = sum(root)
        if s % 2 == 1:
            return False
        seen.pop()
        return s // 2 in seen

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private List<Integer> seen;

    public boolean checkEqualTree(TreeNode root) {
        seen = new ArrayList<>();
        int s = sum(root);
        if (s % 2 != 0) {
            return false;
        }
        seen.remove(seen.size() - 1);
        return seen.contains(s / 2);
    }

    private int sum(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int l = sum(root.left);
        int r = sum(root.right);
        int s = l + r + root.val;
        seen.add(s);
        return s;
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> seen;

    bool checkEqualTree(TreeNode* root) {
        int s = sum(root);
        if (s % 2 != 0) return false;
        seen.pop_back();
        return count(seen.begin(), seen.end(), s / 2);
    }

    int sum(TreeNode* root) {
        if (!root) return 0;
        int l = sum(root->left), r = sum(root->right);
        int s = l + r + root->val;
        seen.push_back(s);
        return s;
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func checkEqualTree(root *TreeNode) bool {
	var seen []int
	var sum func(root *TreeNode) int
	sum = func(root *TreeNode) int {
		if root == nil {
			return 0
		}
		l, r := sum(root.Left), sum(root.Right)
		s := l + r + root.Val
		seen = append(seen, s)
		return s
	}

	s := sum(root)
	if s%2 != 0 {
		return false
	}
	seen = seen[:len(seen)-1]
	for _, v := range seen {
		if v == s/2 {
			return true
		}
	}
	return false
}

...