Given the root
of a binary tree, return the length of the longest path, where each node in the path has the same value. This path may or may not pass through the root.
The length of the path between two nodes is represented by the number of edges between them.
Example 1:
Input: root = [5,4,5,1,1,5] Output: 2
Example 2:
Input: root = [1,4,5,4,4,5] Output: 2
Constraints:
- The number of nodes in the tree is in the range
[0, 104]
. -1000 <= Node.val <= 1000
- The depth of the tree will not exceed
1000
.
Similar to problem 543. Diameter of Binary Tree.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def longestUnivaluePath(self, root: TreeNode) -> int:
def dfs(root):
if root is None:
return 0
left, right = dfs(root.left), dfs(root.right)
left = left + 1 if root.left and root.left.val == root.val else 0
right = right + 1 if root.right and root.right.val == root.val else 0
nonlocal ans
ans = max(ans, left + right)
return max(left, right)
ans = 0
dfs(root)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int ans;
public int longestUnivaluePath(TreeNode root) {
ans = 0;
dfs(root);
return ans;
}
private int dfs(TreeNode root) {
if (root == null) {
return 0;
}
int left = dfs(root.left);
int right = dfs(root.right);
left = root.left != null && root.left.val == root.val ? left + 1 : 0;
right = root.right != null && root.right.val == root.val ? right + 1 : 0;
ans = Math.max(ans, left + right);
return Math.max(left, right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int ans;
int longestUnivaluePath(TreeNode* root) {
ans = 0;
dfs(root);
return ans;
}
int dfs(TreeNode* root) {
if (!root) return 0;
int left = dfs(root->left), right = dfs(root->right);
left = root->left && root->left->val == root->val ? left + 1 : 0;
right = root->right && root->right->val == root->val ? right + 1 : 0;
ans = max(ans, left + right);
return max(left, right);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func longestUnivaluePath(root *TreeNode) int {
ans := 0
var dfs func(root *TreeNode) int
dfs = func(root *TreeNode) int {
if root == nil {
return 0
}
left, right := dfs(root.Left), dfs(root.Right)
if root.Left != nil && root.Left.Val == root.Val {
left++
} else {
left = 0
}
if root.Right != nil && root.Right.Val == root.Val {
right++
} else {
right = 0
}
ans = max(ans, left+right)
return max(left, right)
}
dfs(root)
return ans
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var longestUnivaluePath = function (root) {
let ans = 0;
let dfs = function (root) {
if (!root) {
return 0;
}
let left = dfs(root.left),
right = dfs(root.right);
left = root.left?.val == root.val ? left + 1 : 0;
right = root.right?.val == root.val ? right + 1 : 0;
ans = Math.max(ans, left + right);
return Math.max(left, right);
};
dfs(root);
return ans;
};