给一个有 n
个结点的有向无环图,找到所有从 0
到 n-1
的路径并输出(不要求按顺序)
二维数组的第 i
个数组中的单元都表示有向图中 i
号结点所能到达的下一些结点(译者注:有向图是有方向的,即规定了 a→b 你就不能从 b→a )空就是没有下一个结点了。
示例 1:
输入:graph = [[1,2],[3],[3],[]] 输出:[[0,1,3],[0,2,3]] 解释:有两条路径 0 -> 1 -> 3 和 0 -> 2 -> 3
示例 2:
输入:graph = [[4,3,1],[3,2,4],[3],[4],[]] 输出:[[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
示例 3:
输入:graph = [[1],[]] 输出:[[0,1]]
示例 4:
输入:graph = [[1,2,3],[2],[3],[]] 输出:[[0,1,2,3],[0,2,3],[0,3]]
示例 5:
输入:graph = [[1,3],[2],[3],[]] 输出:[[0,1,2,3],[0,3]]
提示:
- 结点的数量会在范围
[2, 15]
内。 - 你可以把路径以任意顺序输出,但在路径内的结点的顺序必须保证。
因为图中不存在环,所以直接用 DFS 或 BFS 遍历即可
BFS:
class Solution:
def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]:
n = len(graph)
q = deque([[0]])
ans = []
while q:
path = q.popleft()
u = path[-1]
if u == n - 1:
ans.append(path)
continue
for v in graph[u]:
q.append(path + [v])
return ans
DFS:
class Solution:
def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]:
ans = []
def dfs(t):
if t[-1] == len(graph) - 1:
ans.append(t.copy())
return
for v in graph[t[-1]]:
t.append(v)
dfs(t)
t.pop()
dfs([0])
return ans
BFS:
class Solution {
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
int n = graph.length;
Queue<List<Integer>> queue = new ArrayDeque<>();
queue.offer(Arrays.asList(0));
List<List<Integer>> ans = new ArrayList<>();
while (!queue.isEmpty()) {
List<Integer> path = queue.poll();
int u = path.get(path.size() - 1);
if (u == n - 1) {
ans.add(path);
continue;
}
for (int v : graph[u]) {
List<Integer> next = new ArrayList<>(path);
next.add(v);
queue.offer(next);
}
}
return ans;
}
}
DFS:
class Solution {
private List<List<Integer>> ans;
private int[][] graph;
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
ans = new ArrayList<>();
this.graph = graph;
List<Integer> t = new ArrayList<>();
t.add(0);
dfs(t);
return ans;
}
private void dfs(List<Integer> t) {
int cur = t.get(t.size() - 1);
if (cur == graph.length - 1) {
ans.add(new ArrayList<>(t));
return;
}
for (int v : graph[cur]) {
t.add(v);
dfs(t);
t.remove(t.size() - 1);
}
}
}
DFS:
class Solution {
public:
vector<vector<int>> graph;
vector<vector<int>> ans;
vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
this->graph = graph;
vector<int> path;
path.push_back(0);
dfs(0, path);
return ans;
}
void dfs(int i, vector<int> path) {
if (i == graph.size() - 1)
{
ans.push_back(path);
return;
}
for (int j : graph[i])
{
path.push_back(j);
dfs(j, path);
path.pop_back();
}
}
};
DFS:
func allPathsSourceTarget(graph [][]int) [][]int {
var path []int
path = append(path, 0)
var ans [][]int
var dfs func(i int)
dfs = func(i int) {
if i == len(graph)-1 {
ans = append(ans, append([]int(nil), path...))
return
}
for _, j := range graph[i] {
path = append(path, j)
dfs(j)
path = path[:len(path)-1]
}
}
dfs(0)
return ans
}
/**
* @param {number[][]} graph
* @return {number[][]}
*/
var allPathsSourceTarget = function (graph) {
const ans = [];
const t = [0];
const dfs = t => {
const cur = t[t.length - 1];
if (cur == graph.length - 1) {
ans.push([...t]);
return;
}
for (const v of graph[cur]) {
t.push(v);
dfs(t);
t.pop();
}
};
dfs(t);
return ans;
};