Given two sequences pushed
and popped
with distinct values, return true
if and only if this could have been the result of a sequence of push and pop operations on an initially empty stack.
Example 1:
Input: pushed = [1,2,3,4,5], popped = [4,5,3,2,1] Output: true Explanation: We might do the following sequence: push(1), push(2), push(3), push(4), pop() -> 4, push(5), pop() -> 5, pop() -> 3, pop() -> 2, pop() -> 1
Example 2:
Input: pushed = [1,2,3,4,5], popped = [4,3,5,1,2] Output: false Explanation: 1 cannot be popped before 2.
Constraints:
0 <= pushed.length == popped.length <= 1000
0 <= pushed[i], popped[i] < 1000
pushed
is a permutation ofpopped
.pushed
andpopped
have distinct values.
class Solution:
def validateStackSequences(self, pushed: List[int], popped: List[int]) -> bool:
stk, j, n = [], 0, len(popped)
for x in pushed:
stk.append(x)
while stk and j < n and stk[-1] == popped[j]:
stk.pop()
j += 1
return j == n
class Solution {
public boolean validateStackSequences(int[] pushed, int[] popped) {
Deque<Integer> stk = new ArrayDeque<>();
int j = 0, n = popped.length;
for (int x : pushed) {
stk.push(x);
while (!stk.isEmpty() && j < n && stk.peek() == popped[j]) {
stk.pop();
++j;
}
}
return j == n;
}
}
class Solution {
public:
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
int j = 0, n = popped.size();
stack<int> stk;
for (int x : pushed)
{
stk.push(x);
while (!stk.empty() && j < n && stk.top() == popped[j])
{
stk.pop();
++j;
}
}
return j == n;
}
};
func validateStackSequences(pushed []int, popped []int) bool {
j, n := 0, len(popped)
var stk []int
for _, x := range pushed {
stk = append(stk, x)
for len(stk) > 0 && j < n && stk[len(stk)-1] == popped[j] {
stk = stk[:len(stk)-1]
j++
}
}
return j == n
}