Given an array nums
sorted in non-decreasing order, and a number target
, return True
if and only if target
is a majority element.
A majority element is an element that appears more than N/2
times in an array of length N
.
Example 1:
Input: nums = [2,4,5,5,5,5,5,6,6], target = 5 Output: true Explanation: The value 5 appears 5 times and the length of the array is 9. Thus, 5 is a majority element because 5 > 9/2 is true.
Example 2:
Input: nums = [10,100,101,101], target = 101 Output: false Explanation: The value 101 appears 2 times and the length of the array is 4. Thus, 101 is not a majority element because 2 > 4/2 is false.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 10^9
1 <= target <= 10^9
class Solution:
def isMajorityElement(self, nums: List[int], target: int) -> bool:
def bsearch_left(nums, target, left, right):
while left < right:
mid = (left + right) >> 1
if nums[mid] >= target:
right = mid
else:
left = mid + 1
return left if nums[left] == target else -1
def bsearch_right(nums, target, left, right):
while left < right:
mid = (left + right + 1) >> 1
if nums[mid] <= target:
left = mid
else:
right = mid - 1
return left if nums[left] == target else -1
n = len(nums)
left = bsearch_left(nums, target, 0, n - 1)
if left == -1:
return False
right = bsearch_right(nums, target, left, n - 1)
if right == -1:
return False
return right - left + 1 > n >> 1
class Solution:
def isMajorityElement(self, nums: List[int], target: int) -> bool:
left, right = bisect.bisect_left(nums, target), bisect.bisect_right(nums, target)
return right - left > (len(nums) >> 1)
class Solution {
public boolean isMajorityElement(int[] nums, int target) {
int n = nums.length;
int left = bsearchLeft(nums, target, 0, n - 1);
if (left == -1) {
return false;
}
int right = bsearchRight(nums, target, left, n - 1);
if (right == -1) {
return false;
}
return right - left + 1 > (n >> 1);
}
private int bsearchLeft(int[] nums, int target, int left, int right) {
while (left < right) {
int mid = (left + right) >> 1;
if (nums[mid] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
return nums[left] == target ? left : -1;
}
private int bsearchRight(int[] nums, int target, int left, int right) {
while (left < right) {
int mid = (left + right + 1) >> 1;
if (nums[mid] <= target) {
left = mid;
} else {
right = mid - 1;
}
}
return nums[left] == target ? left : -1;
}
}