Skip to content

Latest commit

 

History

History
332 lines (258 loc) · 8.67 KB

File metadata and controls

332 lines (258 loc) · 8.67 KB

中文文档

Description

Design a Skiplist without using any built-in libraries.

A Skiplist is a data structure that takes O(log(n)) time to add, erase and search. Comparing with treap and red-black tree which has the same function and performance, the code length of Skiplist can be comparatively short and the idea behind Skiplists are just simple linked lists.

For example: we have a Skiplist containing [30,40,50,60,70,90] and we want to add 80 and 45 into it. The Skiplist works this way:


Artyom Kalinin [CC BY-SA 3.0], via Wikimedia Commons

You can see there are many layers in the Skiplist. Each layer is a sorted linked list. With the help of the top layers, add , erase and search can be faster than O(n). It can be proven that the average time complexity for each operation is O(log(n)) and space complexity is O(n).

To be specific, your design should include these functions:

  • bool search(int target) : Return whether the target exists in the Skiplist or not.
  • void add(int num): Insert a value into the SkipList. 
  • bool erase(int num): Remove a value in the Skiplist. If num does not exist in the Skiplist, do nothing and return false. If there exists multiple num values, removing any one of them is fine.

See more about Skiplist : https://en.wikipedia.org/wiki/Skip_list

Note that duplicates may exist in the Skiplist, your code needs to handle this situation.

 

Example:

Skiplist skiplist = new Skiplist();



skiplist.add(1);

skiplist.add(2);

skiplist.add(3);

skiplist.search(0);   // return false.

skiplist.add(4);

skiplist.search(1);   // return true.

skiplist.erase(0);    // return false, 0 is not in skiplist.

skiplist.erase(1);    // return true.

skiplist.search(1);   // return false, 1 has already been erased.

 

Constraints:

  • 0 <= num, target <= 20000
  • At most 50000 calls will be made to search, add, and erase.

Solutions

Because the level of the nodes is random, multiple next pointers are required, and the rest of the operation is like a single linked list.

Python3

class Node:
    def __init__(self, val: int, level: int):
        self.val = val
        self.next = [None for _ in range(level)]


class Skiplist:
    max_level = 16
    p = 0.5

    def __init__(self):
        self.head = Node(-1, self.max_level)
        self.level = 1

    def search(self, target: int) -> bool:
        p = self.head
        for i in range(self.level - 1, -1, -1):
            p = self.find_closest(p, i, target)
            if p.next[i] != None and p.next[i].val == target:
                return True
        return False

    def add(self, num: int) -> None:
        level = self.random_level()
        self.level = max(self.level, level)
        node = Node(num, level)
        p = self.head
        for i in range(self.level - 1, -1, -1):
            p = self.find_closest(p, i, num)
            if i < level:
                node.next[i] = p.next[i]
                p.next[i] = node

    def erase(self, num: int) -> bool:
        ok = False
        p = self.head
        for i in range(self.level - 1, -1, -1):
            p = self.find_closest(p, i, num)
            if p.next[i] != None and p.next[i].val == num:
                p.next[i] = p.next[i].next[i]
                ok = True
        while self.level > 1 and self.head.next[self.level - 1] == None:
            self.level -= 1
        return ok

    def find_closest(self, p: Node, level: int, target: int) -> Node:
        while p.next[level] != None and p.next[level].val < target:
            p = p.next[level]
        return p

    def random_level(self) -> int:
        level = 1
        while level < self.max_level and random.random() < self.p:
            level += 1
        return level


# Your Skiplist object will be instantiated and called as such:
# obj = Skiplist()
# param_1 = obj.search(target)
# obj.add(num)
# param_3 = obj.erase(num)

Java

class Skiplist {

	private static final int DEFAULT_MAX_LEVEL = 16;
	private static final double DEFAULT_P_FACTOR = 0.5;

	private final Node head;
	private int currentLevel;

    public Skiplist() {
    	this.head = new Node(0, DEFAULT_MAX_LEVEL);
    	this.currentLevel = 1;
    }

    public boolean search(int target) {
    	Node node = head;
    	for (int i = currentLevel - 1; i >= 0; i--) {
    		node = findClosest(node, i, target);
    		if (node.next[i] != null && node.next[i].value == target) {
    			return true;
    		}
    	}
    	return false;
    }

    public void add(int num) {
    	int level = randomLevel();
    	currentLevel = Math.max(currentLevel, level);
    	Node newNode = new Node(num, level);
    	Node updateNode = head;
    	for (int i = currentLevel - 1; i >= 0; i--) {
    		updateNode = findClosest(updateNode, i, num);
    		if (i < level) {
    			newNode.next[i] = updateNode.next[i];
    			updateNode.next[i] = newNode;
    		}
    	}
    }

    public boolean erase(int num) {
    	boolean exist = false;
    	Node node = head;
    	for (int i = currentLevel - 1; i >= 0; i--) {
    		node = findClosest(node, i, num);
    		if (node.next[i] != null && node.next[i].value == num) {
    			node.next[i] = node.next[i].next[i];
    			exist = true;
    		}
    	}
    	while (currentLevel > 1 && head.next[currentLevel - 1] == null) {
    		currentLevel--;
    	}
    	return exist;
    }

    private Node findClosest(Node node, int level, int value) {
    	while (node.next[level] != null && node.next[level].value < value) {
    		node = node.next[level];
    	}
    	return node;
    }

    private int randomLevel() {
    	int level = 1;
    	while (level < DEFAULT_MAX_LEVEL && Math.random() < DEFAULT_P_FACTOR) {
    		level++;
    	}
    	return level;
    }

    static class Node {
    	int value;
    	Node[] next;

    	Node(int value, int level) {
    		this.value = value;
    		this.next = new Node[level];
    	}
    }
}

Go

func init() { rand.Seed(time.Now().UnixNano()) }

const (
	maxLevel = 16
	p        = 0.5
)

type node struct {
	val  int
	next []*node
}

func newNode(val, level int) *node {
	return &node{
		val:  val,
		next: make([]*node, level),
	}
}

type Skiplist struct {
	head  *node
	level int
}

func Constructor() Skiplist {
	return Skiplist{
		head:  newNode(-1, maxLevel),
		level: 1,
	}
}

func (this *Skiplist) Search(target int) bool {
	p := this.head
	for i := this.level - 1; i >= 0; i-- {
		p = findClosest(p, i, target)
		if p.next[i] != nil && p.next[i].val == target {
			return true
		}
	}
	return false
}

func (this *Skiplist) Add(num int) {
	level := randomLevel()
	if level > this.level {
		this.level = level
	}
	node := newNode(num, level)
	p := this.head
	for i := this.level - 1; i >= 0; i-- {
		p = findClosest(p, i, num)
		if i < level {
			node.next[i] = p.next[i]
			p.next[i] = node
		}
	}
}

func (this *Skiplist) Erase(num int) bool {
	ok := false
	p := this.head
	for i := this.level - 1; i >= 0; i-- {
		p = findClosest(p, i, num)
		if p.next[i] != nil && p.next[i].val == num {
			p.next[i] = p.next[i].next[i]
			ok = true
		}
	}
	for this.level > 1 && this.head.next[this.level-1] == nil {
		this.level--
	}
	return ok
}

func findClosest(p *node, level, target int) *node {
	for p.next[level] != nil && p.next[level].val < target {
		p = p.next[level]
	}
	return p
}

func randomLevel() int {
	level := 1
	for level < maxLevel && rand.Float64() < p {
		level++
	}
	return level
}

/**
 * Your Skiplist object will be instantiated and called as such:
 * obj := Constructor();
 * param_1 := obj.Search(target);
 * obj.Add(num);
 * param_3 := obj.Erase(num);
 */

...