Skip to content

Latest commit

 

History

History
199 lines (168 loc) · 4.46 KB

File metadata and controls

199 lines (168 loc) · 4.46 KB

中文文档

Description

Given an undirected tree, return its diameter: the number of edges in a longest path in that tree.

The tree is given as an array of edges where edges[i] = [u, v] is a bidirectional edge between nodes u and v.  Each node has labels in the set {0, 1, ..., edges.length}.

 

Example 1:

Input: edges = [[0,1],[0,2]]
Output: 2
Explanation: 
A longest path of the tree is the path 1 - 0 - 2.

Example 2:

Input: edges = [[0,1],[1,2],[2,3],[1,4],[4,5]]
Output: 4
Explanation: 
A longest path of the tree is the path 3 - 2 - 1 - 4 - 5.

 

Constraints:

  • 0 <= edges.length < 10^4
  • edges[i][0] != edges[i][1]
  • 0 <= edges[i][j] <= edges.length
  • The given edges form an undirected tree.

Solutions

Python3

class Solution:
    def treeDiameter(self, edges: List[List[int]]) -> int:
        def dfs(u, t):
            nonlocal ans, vis, d, next
            if vis[u]:
                return
            vis[u] = True
            for v in d[u]:
                dfs(v, t + 1)
            if ans < t:
                ans = t
                next = u

        d = defaultdict(set)
        vis = [False] * (len(edges) + 1)
        for u, v in edges:
            d[u].add(v)
            d[v].add(u)
        ans = 0
        next = 0
        dfs(edges[0][0], 0)
        vis = [False] * (len(edges) + 1)
        dfs(next, 0)
        return ans

Java

class Solution {
    private Map<Integer, Set<Integer>> g;
    private boolean[] vis;
    private int next;
    private int ans;

    public int treeDiameter(int[][] edges) {
        int n = edges.length;
        ans = 0;
        g = new HashMap<>();
        for (int[] e : edges) {
            g.computeIfAbsent(e[0], k -> new HashSet<>()).add(e[1]);
            g.computeIfAbsent(e[1], k -> new HashSet<>()).add(e[0]);
        }
        vis = new boolean[n + 1];
        next = edges[0][0];
        dfs(next, 0);
        vis = new boolean[n + 1];
        dfs(next, 0);
        return ans;
    }

    private void dfs(int u, int t) {
        if (vis[u]) {
            return;
        }
        vis[u] = true;
        if (ans < t) {
            ans = t;
            next = u;
        }
        for (int v : g.get(u)) {
            dfs(v, t + 1);
        }
    }
}

C++

class Solution {
public:
    unordered_map<int, unordered_set<int>> g;
    vector<bool> vis;
    int ans;
    int next;

    int treeDiameter(vector<vector<int>>& edges) {
        for (auto& e : edges)
        {
            g[e[0]].insert(e[1]);
            g[e[1]].insert(e[0]);
        }
        int n = edges.size();
        ans = 0;
        vis.resize(n + 1);
        next = edges[0][0];
        dfs(next, 0);
        vis.assign(vis.size(), false);
        dfs(next, 0);
        return ans;
    }

    void dfs(int u, int t) {
        if (vis[u]) return;
        vis[u] = true;
        if (ans < t)
        {
            ans = t;
            next = u;
        }
        for (int v : g[u]) dfs(v, t + 1);
    }
};

Go

func treeDiameter(edges [][]int) int {
	n := len(edges)
	g := make(map[int][]int)
	for _, e := range edges {
		g[e[0]] = append(g[e[0]], e[1])
		g[e[1]] = append(g[e[1]], e[0])
	}
	vis := make(map[int]bool, n+1)
	ans := 0
	next := edges[0][0]
	var dfs func(u, t int)
	dfs = func(u, t int) {
		if vis[u] {
			return
		}
		vis[u] = true
		if ans < t {
			ans = t
			next = u
		}
		if vs, ok := g[u]; ok {
			for _, v := range vs {
				dfs(v, t+1)
			}
		}
	}
	dfs(next, 0)
	vis = make(map[int]bool, n+1)
	dfs(next, 0)
	return ans
}

...