给你一个points
数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi]
。
连接点 [xi, yi]
和点 [xj, yj]
的费用为它们之间的 曼哈顿距离 :|xi - xj| + |yi - yj|
,其中 |val|
表示 val
的绝对值。
请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。
示例 1:
输入:points = [[0,0],[2,2],[3,10],[5,2],[7,0]] 输出:20 解释: 我们可以按照上图所示连接所有点得到最小总费用,总费用为 20 。 注意到任意两个点之间只有唯一一条路径互相到达。
示例 2:
输入:points = [[3,12],[-2,5],[-4,1]] 输出:18
示例 3:
输入:points = [[0,0],[1,1],[1,0],[-1,1]] 输出:4
示例 4:
输入:points = [[-1000000,-1000000],[1000000,1000000]] 输出:4000000
示例 5:
输入:points = [[0,0]] 输出:0
提示:
1 <= points.length <= 1000
-106 <= xi, yi <= 106
- 所有点
(xi, yi)
两两不同。
最小生成树 + 并查集。先将所有边按照长度由小到大进行排序,循环遍历每条边,逐个加入到图中,当所有点达到一个连通状态时,退出循环,返回此时的总费用即可。
模板 1——朴素并查集:
# 初始化,p存储每个点的父节点
p = list(range(n))
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
模板 2——维护 size 的并查集:
# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
p = list(range(n))
size = [1] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
# 路径压缩
p[x] = find(p[x])
return p[x]
# 合并a和b所在的两个集合
if find(a) != find(b):
size[find(b)] += size[find(a)]
p[find(a)] = find(b)
模板 3——维护到祖宗节点距离的并查集:
# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离
p = list(range(n))
d = [0] * n
# 返回x的祖宗节点
def find(x):
if p[x] != x:
t = find(p[x])
d[x] += d[p[x]]
p[x] = t
return p[x]
# 合并a和b所在的两个集合
p[find(a)] = find(b)
d[find(a)] = distance
class Solution:
def minCostConnectPoints(self, points: List[List[int]]) -> int:
n = len(points)
p = list(range(n))
def find(x):
if p[x] != x:
p[x] = find(p[x])
return p[x]
edges = []
for i in range(n):
x1, y1 = points[i]
for j in range(i + 1, n):
x2, y2 = points[j]
edges.append([abs(x1 - x2) + abs(y1 - y2), i, j])
edges.sort()
res = 0
for cost, i, j in edges:
if find(i) == find(j):
continue
p[find(i)] = find(j)
n -= 1
res += cost
if n == 1:
return res
return 0
class Solution {
private int[] p;
public int minCostConnectPoints(int[][] points) {
int n = points.length;
p = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
}
List<int[]> edges = new ArrayList<>();
for (int i = 0; i < n; ++i) {
int x1 = points[i][0], y1 = points[i][1];
for (int j = i + 1; j < n; ++j) {
int x2 = points[j][0], y2 = points[j][1];
edges.add(new int[]{Math.abs(x1 - x2) + Math.abs(y1 - y2), i, j});
}
}
edges.sort(Comparator.comparingInt(a -> a[0]));
int res = 0;
for (int[] e : edges) {
if (find(e[1]) == find(e[2])) {
continue;
}
p[find(e[1])] = find(e[2]);
--n;
res += e[0];
if (n == 1) {
break;
}
}
return res;
}
private int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
}
class Solution {
public:
vector<int> p;
int minCostConnectPoints(vector<vector<int>>& points) {
int n = points.size();
p.resize(n);
for (int i = 0; i < n; ++i) p[i] = i;
vector<vector<int>> edges;
for (int i = 0; i < n; ++i)
{
int x1 = points[i][0], y1 = points[i][1];
for (int j = i + 1; j < n; ++j)
{
int x2 = points[j][0], y2 = points[j][1];
edges.push_back({abs(x1 - x2) + abs(y1 - y2), i, j});
}
}
sort(edges.begin(), edges.end());
int res = 0;
for (auto e : edges)
{
if (find(e[1]) == find(e[2])) continue;
p[find(e[1])] = find(e[2]);
--n;
res += e[0];
if (n == 1) break;
}
return res;
}
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
};
var p []int
func minCostConnectPoints(points [][]int) int {
n := len(points)
p = make([]int, n)
for i := 0; i < n; i++ {
p[i] = i
}
var edges [][]int
for i := 0; i < n; i++ {
x1, y1 := points[i][0], points[i][1]
for j := i + 1; j < n; j++ {
x2, y2 := points[j][0], points[j][1]
edges = append(edges, []int{abs(x1 - x2) + abs(y1 - y2), i, j})
}
}
sort.Slice(edges, func(i, j int) bool {
return edges[i][0] < edges[j][0]
})
res := 0
for _, e := range edges {
if find(e[1]) == find(e[2]) {
continue
}
p[find(e[1])] = find(e[2])
n--
res += e[0]
if n == 1 {
break
}
}
return res
}
func find(x int) int {
if p[x] != x {
p[x] = find(p[x])
}
return p[x]
}
func abs(x int) int {
if x > 0 {
return x
}
return -x
}