A binary tree is named Even-Odd if it meets the following conditions:
- The root of the binary tree is at level index
0
, its children are at level index1
, their children are at level index2
, etc. - For every even-indexed level, all nodes at the level have odd integer values in strictly increasing order (from left to right).
- For every odd-indexed level, all nodes at the level have even integer values in strictly decreasing order (from left to right).
Given the root
of a binary tree, return true
if the binary tree is Even-Odd, otherwise return false
.
Example 1:
Input: root = [1,10,4,3,null,7,9,12,8,6,null,null,2] Output: true Explanation: The node values on each level are: Level 0: [1] Level 1: [10,4] Level 2: [3,7,9] Level 3: [12,8,6,2] Since levels 0 and 2 are all odd and increasing, and levels 1 and 3 are all even and decreasing, the tree is Even-Odd.
Example 2:
Input: root = [5,4,2,3,3,7] Output: false Explanation: The node values on each level are: Level 0: [5] Level 1: [4,2] Level 2: [3,3,7] Node values in the level 2 must be in strictly increasing order, so the tree is not Even-Odd.
Example 3:
Input: root = [5,9,1,3,5,7] Output: false Explanation: Node values in the level 1 should be even integers.
Example 4:
Input: root = [1] Output: true
Example 5:
Input: root = [11,8,6,1,3,9,11,30,20,18,16,12,10,4,2,17] Output: true
Constraints:
- The number of nodes in the tree is in the range
[1, 105]
. 1 <= Node.val <= 106
BFS.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isEvenOddTree(self, root: TreeNode) -> bool:
even = True
q = deque([root])
while q:
n = len(q)
prev = 0 if even else 10 ** 6
for _ in range(n):
node = q.popleft()
if even and (prev >= node.val or node.val % 2 == 0):
return False
if not even and (prev <= node.val or node.val % 2 == 1):
return False
prev = node.val
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
even = not even
return True
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isEvenOddTree(TreeNode root) {
boolean even = true;
Deque<TreeNode> q = new ArrayDeque<>();
q.offerLast(root);
while (!q.isEmpty()) {
int prev = even ? 0 : 1000000;
for (int i = 0, n = q.size(); i < n; ++i) {
TreeNode node = q.pollFirst();
if (even && (prev >= node.val || node.val % 2 == 0)) {
return false;
}
if (!even && (prev <= node.val || node.val % 2 == 1)) {
return false;
}
prev = node.val;
if (node.left != null) {
q.offerLast(node.left);
}
if (node.right != null) {
q.offerLast(node.right);
}
}
even = !even;
}
return true;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isEvenOddTree(TreeNode* root) {
bool even = true;
queue<TreeNode*> q;
q.push(root);
while (!q.empty())
{
int prev = even ? 0 : 1000000;
for (int i = 0, n = q.size(); i < n; ++i)
{
auto node = q.front();
q.pop();
if (even && (prev >= node->val || node->val % 2 == 0)) return false;
if (!even && (prev <= node->val || node->val % 2 == 1)) return false;
prev = node->val;
if (node->left) q.push(node->left);
if (node->right) q.push(node->right);
}
even = !even;
}
return true;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isEvenOddTree(root *TreeNode) bool {
even := true
var q []*TreeNode
q = append(q, root)
for len(q) > 0 {
prev := 0
if !even {
prev = 1000000
}
n := len(q)
for i := 0; i < n; i++ {
node := q[0]
q = q[1:]
if even && (prev >= node.Val || node.Val%2 == 0) {
return false
}
if !even && (prev <= node.Val || node.Val%2 == 1) {
return false
}
prev = node.Val
if node.Left != nil {
q = append(q, node.Left)
}
if node.Right != nil {
q = append(q, node.Right)
}
}
even = !even
}
return true
}