Skip to content

Latest commit

 

History

History
209 lines (174 loc) · 5.83 KB

File metadata and controls

209 lines (174 loc) · 5.83 KB

中文文档

Description

A sequence of numbers is called arithmetic if it consists of at least two elements, and the difference between every two consecutive elements is the same. More formally, a sequence s is arithmetic if and only if s[i+1] - s[i] == s[1] - s[0] for all valid i.

For example, these are arithmetic sequences:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9

The following sequence is not arithmetic:

1, 1, 2, 5, 7

You are given an array of n integers, nums, and two arrays of m integers each, l and r, representing the m range queries, where the ith query is the range [l[i], r[i]]. All the arrays are 0-indexed.

Return a list of boolean elements answer, where answer[i] is true if the subarray nums[l[i]], nums[l[i]+1], ... , nums[r[i]] can be rearranged to form an arithmetic sequence, and false otherwise.

 

Example 1:

Input: nums = [4,6,5,9,3,7], l = [0,0,2], r = [2,3,5]
Output: [true,false,true]
Explanation:
In the 0th query, the subarray is [4,6,5]. This can be rearranged as [6,5,4], which is an arithmetic sequence.
In the 1st query, the subarray is [4,6,5,9]. This cannot be rearranged as an arithmetic sequence.
In the 2nd query, the subarray is [5,9,3,7]. This can be rearranged as [3,5,7,9], which is an arithmetic sequence.

Example 2:

Input: nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10]
Output: [false,true,false,false,true,true]

 

Constraints:

  • n == nums.length
  • m == l.length
  • m == r.length
  • 2 <= n <= 500
  • 1 <= m <= 500
  • 0 <= l[i] < r[i] < n
  • -105 <= nums[i] <= 105

Solutions

Python3

class Solution:
    def checkArithmeticSubarrays(self, nums: List[int], l: List[int], r: List[int]) -> List[bool]:
        def check(nums, l, r):
            if r - l < 2:
                return True
            s = set(nums[l: r + 1])
            mx = max(nums[l: r + 1])
            mi = min(nums[l: r + 1])
            if (mx - mi) % (r - l) != 0:
                return False
            delta = (mx - mi) / (r - l)
            for i in range(1, r - l + 1):
                if (mi + delta * i) not in s:
                    return False
            return True

        return [check(nums, l[i], r[i]) for i in range(len(l))]

Java

class Solution {
    public List<Boolean> checkArithmeticSubarrays(int[] nums, int[] l, int[] r) {
        List<Boolean> res = new ArrayList<>();
        for (int i = 0; i < l.length; ++i) {
            res.add(check(nums, l[i], r[i]));
        }
        return res;
    }

    private boolean check(int[] nums, int l, int r) {
        if (r - l < 2) {
            return true;
        }
        Set<Integer> s = new HashSet<>();
        int mx = Integer.MIN_VALUE;
        int mi = Integer.MAX_VALUE;
        for (int i = l; i <= r; ++i) {
            s.add(nums[i]);
            mx = Math.max(mx, nums[i]);
            mi = Math.min(mi, nums[i]);
        }
        if ((mx - mi) % (r - l) != 0) {
            return false;
        }
        int delta = (mx - mi) / (r - l);
        for (int i = 1; i <= r - l; ++i) {
            if (!s.contains(mi + delta * i)) {
                return false;
            }
        }
        return true;
    }
}

C++

class Solution {
public:
    vector<bool> checkArithmeticSubarrays(vector<int>& nums, vector<int>& l, vector<int>& r) {
        vector<bool> res;
        for (int i = 0; i < l.size(); ++i) {
            res.push_back(check(nums, l[i], r[i]));
        }
        return res;
    }

    bool check(vector<int>& nums, int l, int r) {
        if (r - l < 2) return true;
        unordered_set<int> s;
        int mx = -100010;
        int mi = 100010;
        for (int i = l; i <= r; ++i) {
            s.insert(nums[i]);
            mx = max(mx, nums[i]);
            mi = min(mi, nums[i]);
        }
        if ((mx - mi) % (r - l) != 0) return false;
        int delta = (mx - mi) / (r - l);
        for (int i = 1; i <= r - l; ++i) {
            if (!s.count(mi + delta * i)) return false;
        }
        return true;
    }
};

Go

func checkArithmeticSubarrays(nums []int, l []int, r []int) []bool {
	n := len(l)
	var res []bool
	for i := 0; i < n; i++ {
		res = append(res, check(nums, l[i], r[i]))
	}
	return res
}

func check(nums []int, l, r int) bool {
	if r-l < 2 {
		return true
	}
	s := make(map[int]bool)
	mx, mi := -100010, 100010
	for i := l; i <= r; i++ {
		s[nums[i]] = true
		mx = max(mx, nums[i])
		mi = min(mi, nums[i])
	}
	if (mx-mi)%(r-l) != 0 {
		return false
	}
	delta := (mx - mi) / (r - l)
	for i := 1; i <= r-l; i++ {
		if !s[mi+delta*i] {
			return false
		}
	}
	return true
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

...