You are given an integer array nums
sorted in non-decreasing order.
Build and return an integer array result
with the same length as nums
such that result[i]
is equal to the summation of absolute differences between nums[i]
and all the other elements in the array.
In other words, result[i]
is equal to sum(|nums[i]-nums[j]|)
where 0 <= j < nums.length
and j != i
(0-indexed).
Example 1:
Input: nums = [2,3,5] Output: [4,3,5] Explanation: Assuming the arrays are 0-indexed, then result[0] = |2-2| + |2-3| + |2-5| = 0 + 1 + 3 = 4, result[1] = |3-2| + |3-3| + |3-5| = 1 + 0 + 2 = 3, result[2] = |5-2| + |5-3| + |5-5| = 3 + 2 + 0 = 5.
Example 2:
Input: nums = [1,4,6,8,10] Output: [24,15,13,15,21]
Constraints:
2 <= nums.length <= 105
1 <= nums[i] <= nums[i + 1] <= 104
class Solution:
def getSumAbsoluteDifferences(self, nums: List[int]) -> List[int]:
n = len(nums)
presum = [0] * (n + 1)
for i in range(n):
presum[i + 1] = presum[i] + nums[i]
res = []
for i, num in enumerate(nums):
t = num * i - presum[i] + presum[n] - presum[i + 1] - num * (n - i - 1)
res.append(t)
return res
class Solution {
public int[] getSumAbsoluteDifferences(int[] nums) {
int n = nums.length;
int[] presum = new int[n + 1];
for (int i = 0; i < n; ++i) {
presum[i + 1] = presum[i] + nums[i];
}
int[] res = new int[n];
for (int i = 0; i < n; ++i) {
res[i] = nums[i] * i - presum[i] + presum[n] - presum[i + 1] - nums[i] * (n - i - 1);
}
return res;
}
}
class Solution {
public:
vector<int> getSumAbsoluteDifferences(vector<int>& nums) {
int n = nums.size();
vector<int> presum(n + 1);
for (int i = 0; i < n; ++i) {
presum[i + 1] = presum[i] + nums[i];
}
vector<int> res;
for (int i = 0; i < n; ++i) {
int t = nums[i] * i - presum[i] + presum[n] - presum[i + 1] - nums[i] * (n - i - 1);
res.push_back(t);
}
return res;
}
};
func getSumAbsoluteDifferences(nums []int) []int {
n := len(nums)
presum := make([]int, n+1)
for i := 0; i < n; i++ {
presum[i+1] = presum[i] + nums[i]
}
var res []int
for i := 0; i < n; i++ {
t := nums[i]*i - presum[i] + presum[n] - presum[i+1] - nums[i]*(n-i-1)
res = append(res, t)
}
return res
}