Skip to content

Latest commit

 

History

History
162 lines (131 loc) · 3.65 KB

File metadata and controls

162 lines (131 loc) · 3.65 KB

中文文档

Description

Given an array of positive integers nums, return the maximum possible sum of an ascending subarray in nums.

A subarray is defined as a contiguous sequence of numbers in an array.

A subarray [numsl, numsl+1, ..., numsr-1, numsr] is ascending if for all i where l <= i < r, numsi < numsi+1. Note that a subarray of size 1 is ascending.

 

Example 1:

Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.

Example 2:

Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.

Example 3:

Input: nums = [12,17,15,13,10,11,12]
Output: 33
Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.

Example 4:

Input: nums = [100,10,1]
Output: 100

 

Constraints:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 100

Solutions

Python3

class Solution:
    def maxAscendingSum(self, nums: List[int]) -> int:
        res, cur = 0, nums[0]
        for i in range(1, len(nums)):
            if nums[i] > nums[i - 1]:
                cur += nums[i]
            else:
                res = max(res, cur)
                cur = nums[i]
        res = max(res, cur)
        return res

Java

class Solution {
    public int maxAscendingSum(int[] nums) {
        int cur = nums[0];
        int res = 0;
        for (int i = 1; i < nums.length; ++i) {
            if (nums[i] > nums[i - 1]) {
                cur += nums[i];
            } else {
                res = Math.max(res, cur);
                cur = nums[i];
            }
        }
        res = Math.max(res, cur);
        return res;
    }
}

TypeScript

function maxAscendingSum(nums: number[]): number {
    let res = 0,
        sum = nums[0];
    for (let i = 1; i < nums.length; ++i) {
        if (nums[i] > nums[i - 1]) {
            sum += nums[i];
        } else {
            res = Math.max(res, sum);
            sum = nums[i];
        }
    }
    res = Math.max(res, sum);
    return res;
}

C++

class Solution {
public:
    int maxAscendingSum(vector<int>& nums) {
        int res = 0, cur = nums[0];
        for (int i = 1; i < nums.size(); ++i) {
            if (nums[i] > nums[i - 1]) {
                cur += nums[i];
            } else {
                res = max(res, cur);
                cur = nums[i];
            }
        }
        res = max(res, cur);
        return res;
    }
};

Go

func maxAscendingSum(nums []int) int {
	res, cur := 0, nums[0]
	for i := 1; i < len(nums); i++ {
		if nums[i] > nums[i-1] {
			cur += nums[i]
		} else {
			if res < cur {
				res = cur
			}
			cur = nums[i]
		}
	}
	if res < cur {
		res = cur
	}
	return res
}

...