Skip to content

Latest commit

 

History

History
218 lines (182 loc) · 6.38 KB

File metadata and controls

218 lines (182 loc) · 6.38 KB

中文文档

Description

You are given a floating-point number hour, representing the amount of time you have to reach the office. To commute to the office, you must take n trains in sequential order. You are also given an integer array dist of length n, where dist[i] describes the distance (in kilometers) of the ith train ride.

Each train can only depart at an integer hour, so you may need to wait in between each train ride.

  • For example, if the 1st train ride takes 1.5 hours, you must wait for an additional 0.5 hours before you can depart on the 2nd train ride at the 2 hour mark.

Return the minimum positive integer speed (in kilometers per hour) that all the trains must travel at for you to reach the office on time, or -1 if it is impossible to be on time.

Tests are generated such that the answer will not exceed 107 and hour will have at most two digits after the decimal point.

 

Example 1:

Input: dist = [1,3,2], hour = 6
Output: 1
Explanation: At speed 1:
- The first train ride takes 1/1 = 1 hour.
- Since we are already at an integer hour, we depart immediately at the 1 hour mark. The second train takes 3/1 = 3 hours.
- Since we are already at an integer hour, we depart immediately at the 4 hour mark. The third train takes 2/1 = 2 hours.
- You will arrive at exactly the 6 hour mark.

Example 2:

Input: dist = [1,3,2], hour = 2.7
Output: 3
Explanation: At speed 3:
- The first train ride takes 1/3 = 0.33333 hours.
- Since we are not at an integer hour, we wait until the 1 hour mark to depart. The second train ride takes 3/3 = 1 hour.
- Since we are already at an integer hour, we depart immediately at the 2 hour mark. The third train takes 2/3 = 0.66667 hours.
- You will arrive at the 2.66667 hour mark.

Example 3:

Input: dist = [1,3,2], hour = 1.9
Output: -1
Explanation: It is impossible because the earliest the third train can depart is at the 2 hour mark.

 

Constraints:

  • n == dist.length
  • 1 <= n <= 105
  • 1 <= dist[i] <= 105
  • 1 <= hour <= 109
  • There will be at most two digits after the decimal point in hour.

Solutions

Python3

class Solution:
    def minSpeedOnTime(self, dist: List[int], hour: float) -> int:
        def arrive_on_time(speed):
            res = 0
            for i, d in enumerate(dist):
                res += (d / speed) if i == len(dist) - 1 else math.ceil(d / speed)
            return res <= hour

        left, right = 1, 10 ** 7
        while left < right:
            mid = (left + right) >> 1
            if arrive_on_time(mid):
                right = mid
            else:
                left = mid + 1
        return left if arrive_on_time(left) else -1

Java

class Solution {
    public int minSpeedOnTime(int[] dist, double hour) {
        int left = 1, right = (int) 1e7;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (arriveOnTime(dist, mid, hour)) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return arriveOnTime(dist, left, hour) ? left : -1;
    }

    private boolean arriveOnTime(int[] dist, int speed, double hour) {
        double res = 0;
        for (int i = 0; i < dist.length; ++i) {
            double cost = dist[i] * 1.0 / speed;
            res += (i == dist.length - 1 ? cost : Math.ceil(cost));
        }
        return res <= hour;
    }
}

C++

class Solution {
public:
    int minSpeedOnTime(vector<int>& dist, double hour) {
        int left = 1, right = 1e7;
        while (left < right) {
            int mid = (left + right) >> 1;
            if (arriveOnTime(dist, mid, hour)) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return arriveOnTime(dist, left, hour) ? left : -1;
    }

    bool arriveOnTime(vector<int>& dist, int speed, double hour) {
        double res = 0;
        for (int i = 0; i < dist.size(); ++i) {
            double cost = dist[i] * 1.0 / speed;
            res += (i == dist.size() - 1 ? cost : ceil(cost));
        }
        return res <= hour;
    }
};

JavaScript

/**
 * @param {number[]} dist
 * @param {number} hour
 * @return {number}
 */
var minSpeedOnTime = function (dist, hour) {
    if (dist.length > Math.ceil(hour)) return -1;
    let left = 1,
        right = 10 ** 7;
    while (left < right) {
        let mid = (left + right) >> 1;
        if (arriveOnTime(dist, mid, hour)) {
            right = mid;
        } else {
            left = mid + 1;
        }
    }
    return left;
};

function arriveOnTime(dist, speed, hour) {
    let res = 0.0;
    let n = dist.length;
    for (let i = 0; i < n; i++) {
        let cost = parseFloat(dist[i]) / speed;
        if (i != n - 1) {
            cost = Math.ceil(cost);
        }
        res += cost;
    }
    return res <= hour;
}

Go

func minSpeedOnTime(dist []int, hour float64) int {
	n := len(dist)
	left, right := 1, int(1e7)
	for left < right {
		mid := (left + right) >> 1
		if arriveOnTime(dist, n, float64(mid), hour) {
			right = mid
		} else {
			left = mid + 1
		}
	}
	if arriveOnTime(dist, n, float64(left), hour) {
		return left
	}
	return -1
}

func arriveOnTime(dist []int, n int, speed, hour float64) bool {
	var cost float64
	for _, v := range dist[:n-1] {
		cost += math.Ceil(float64(v) / speed)
	}
	cost += float64(dist[n-1]) / speed
	return cost <= hour
}

...