Skip to content

Latest commit

 

History

History
140 lines (110 loc) · 3.62 KB

File metadata and controls

140 lines (110 loc) · 3.62 KB

English Version

题目描述

给你一个下标从 0 开始的二进制字符串 s 和两个整数 minJump 和 maxJump 。一开始,你在下标 0 处,且该位置的值一定为 '0' 。当同时满足如下条件时,你可以从下标 i 移动到下标 j 处:

  • i + minJump <= j <= min(i + maxJump, s.length - 1) 且
  • s[j] == '0'.

如果你可以到达 s 的下标 s.length - 1 处,请你返回 true ,否则返回 false 。

 

示例 1:

输入:s = "011010", minJump = 2, maxJump = 3
输出:true
解释:
第一步,从下标 0 移动到下标 3 。
第二步,从下标 3 移动到下标 5 。

示例 2:

输入:s = "01101110", minJump = 2, maxJump = 3
输出:false

 

提示:

  • 2 <= s.length <= 105
  • s[i] 要么是 '0' ,要么是 '1'
  • s[0] == '0'
  • 1 <= minJump <= maxJump < s.length

解法

“动态规划 + 前缀和”实现。

Python3

class Solution:
    def canReach(self, s: str, minJump: int, maxJump: int) -> bool:
        n = len(s)
        dp = [False] * n
        dp[0] = True
        pre_sum = [0] * (n + 1)
        pre_sum[1] = 1
        for i in range(1, n):
            if s[i] == '0':
                l = max(0, i - maxJump)
                r = i - minJump
                if r >= l and pre_sum[r + 1] - pre_sum[l] > 0:
                    dp[i] = True
            pre_sum[i + 1] = pre_sum[i] + dp[i]
        return dp[n - 1]

Java

class Solution {
    public boolean canReach(String s, int minJump, int maxJump) {
        int n = s.length();
        boolean[] dp = new boolean[n];
        dp[0] = true;
        int[] preSum = new int[n + 1];
        preSum[1] = 1;
        for (int i = 1; i < n; ++i) {
            if (s.charAt(i) == '0') {
                int l = Math.max(0, i - maxJump);
                int r = i - minJump;
                if (r >= l && preSum[r + 1] - preSum[l] > 0) {
                    dp[i] = true;
                }
            }
            preSum[i + 1] = preSum[i] + (dp[i] ? 1 : 0);
        }
        return dp[n - 1];
    }
}

JavaScript

/**
 * @param {string} s
 * @param {number} minJump
 * @param {number} maxJump
 * @return {boolean}
 */
var canReach = function (s, minJump, maxJump) {
    let n = s.length;
    let dp = new Array(n).fill(0);
    let sum = new Array(n + 1).fill(0);
    dp[0] = 1;
    sum[1] = 1;
    for (let i = 1; i < n; i++) {
        if (s.charAt(i) == "0") {
            let left = Math.max(0, i - maxJump);
            let right = i - minJump;
            if (left <= right && sum[right + 1] - sum[left] > 0) {
                dp[i] = 1;
            }
        }
        sum[i + 1] = sum[i] + dp[i];
    }
    return dp.pop();
};

...