forked from danny-wilson/kmer_pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotManhattanbowtie.Rscript
executable file
·498 lines (390 loc) · 22.7 KB
/
plotManhattanbowtie.Rscript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
#!/usr/bin/env Rscript
options(error = quote({
dump.frames(to.file=TRUE, dumpto="Rcoredump")
load("Rcoredump.rda")
print(Rcoredump)
q()
}))
# Start time
start.time = proc.time()[3]
args = commandArgs(trailingOnly=TRUE)
help = c("plotManhattanbowtie.Rscript plot QQ and Manhattan plots",
"Usage: plotManhattanbowtie.Rscript output_prefix analysis_dir kmerfilePrefix ref_gb ref_fa id_file kmer_type kmer_length minor_allele_threshold samtools_filter software_file blastident ngenes [annotateGeneFile override_signif]")
if(length(args!=0)){
if(args[1]=="-help" | args[1]=="-h"){
cat(help,sep="\n")
q("no")
}
}
if(length(args)!=13 & length(args)!=15){
cat(help,sep="\n")
cat("Received arguments: ", args, "\n")
stop("\nIncorrect usage\n")
}
###################################################################################################
## Functions and software paths
###################################################################################################
read_ref_gbk = function(ref_gb = NULL){
ref_length = scan(ref_gb, what = character(0), sep = "\n", nlines = 1)
ref_length = as.numeric(unlist(strsplit(ref_length," "))[which(unlist(strsplit(ref_length," "))!="")][3])
if(is.na(ref_length)) stop("Error retrieving the reference genome length from the genbank file","\n")
cat("Reference genome length:", ref_length,"\n")
# Read in reference genbank file
ref = reorder_reference_gbk(ref_gb = ref_gb)
cat("Read in reference genbank file","\n")
return(list("ref" = ref, "ref_length" = ref_length))
}
read_bowtie_pos = function(mappingFile = NULL, kmerIndex = NULL, ref_length = NULL){
bowtie_pos = as.numeric(system(paste0("zcat ", mappingFile, " | cut -f4"), intern = T))
bowtie_index = as.numeric(system(paste0("zcat ", mappingFile, " | cut -f1"), intern = T))+1
final_kmer_pos_index_missing = which(is.na(match(1:length(kmerIndex), bowtie_index)))
if(length(final_kmer_pos_index_missing)>0){
final_kmer_pos_index = c(bowtie_index, final_kmer_pos_index_missing)
final_kmer_pos = c(bowtie_pos, seq(from=ref_length+100000, by = 0.01, length.out = length(final_kmer_pos_index_missing)))
}
cat("Got final kmer positions","\n")
return(list("final_kmer_pos_index" = final_kmer_pos_index, "final_kmer_pos" = final_kmer_pos))
}
which_kmers_in_genes = function(ref = NULL, pos = NULL, ref_length = NULL, gene = NULL, flanking = 0){
start = as.numeric(ref[,3])[which(ref[,1]==gene)]-flanking
end = as.numeric(ref[,4])[which(ref[,1]==gene)]+flanking
if(start<1) start = 1; if(end>ref_length) end = ref_length
return(which(pos>=start & pos<=end))
}
# Returns the first gene/IR the kmer falls within
get_genes_for_kmers = function(ref = NULL, pos = NULL, ref_length = NULL, ref.pos.gene.id = NULL){
if(pos>ref_length | pos<as.numeric(ref[1,3])){
return(NA)
} else {
return(as.character(ref[ref.pos.gene.id[[pos]][1],1]))
}
}
###################################################################################################
# # Initialize variables
output_prefix = as.character(args[1])
output_dir = as.character(args[2])
kmerfilePrefix = as.character(args[3])
ref_gb = as.character(args[4])
ref_fa = as.character(args[5])
id_file = as.character(args[6])
kmer_type = tolower(as.character(args[7]))
kmer_length = as.integer(args[8])
minor_allele_threshold = as.numeric(args[9])
samtools_filter = as.integer(args[10])
software_file = as.character(args[11])
blastident = as.integer(args[12])
ngenes = as.integer(args[13]))
if(length(args)>13){
annotateGeneFile = as.character(args[14])
override_signif = as.logical(args[15])
} else {
annotateGeneFile = NULL
override_signif = FALSE
}
ref.name = scan(ref_fa, what = character(0), sep = "\n", nlines = 1, quiet = TRUE)
ref.name = unlist(strsplit(ref.name, " "))[1]
if(substr(ref.name,1,1)!=">") stop("Error: reference fasta file does not begin with a name starting with '>'","\n")
ref.name = substr(ref.name,2,1e6)
kmerKeySizeFile = paste0(kmerfilePrefix, ".patternmerge.patternKeySize.txt")
kmerIndexFile = paste0(kmerfilePrefix, ".patternmerge.patternIndex.txt.gz")
kmerPresenceCountFile = paste0(kmerfilePrefix, ".patternmerge.presenceCount.txt.gz")
kmerSeqFile = paste0(kmerfilePrefix, ".kmermerge.txt.gz")
mappingFile = paste0(kmerfilePrefix,".", ref.name, ".SAMq", samtools_filter, ".bowtie2map.txt.gz")
# Check file inputs
if(!file.exists(output_dir)) stop("Error: output directory doesn't exist","\n")
if(unlist(strsplit(output_dir,""))[length(unlist(strsplit(output_dir,"")))]!="/") output_dir = paste0(output_dir, "/")
if(!file.exists(kmerKeySizeFile)) stop("Error: kmer pattern key size file doesn't exist: ",kmerKeySizeFile," \n")
if(!file.exists(kmerIndexFile)) stop("Error: kmer pattern index file doesn't exist: ",kmerIndexFile," \n")
if(!file.exists(kmerPresenceCountFile)) stop("Error: kmer presence count file doesn't exist: ",kmerPresenceCountFile," \n")
if(!file.exists(mappingFile)) stop("Error: bowtie2 mapping file doesn't exist: ",mappingFile," \n")
if(!file.exists(kmerSeqFile)) stop("Error: kmer sequence file doesn't exist: ",kmerSeqFile," \n")
if(!file.exists(ref_gb)) stop("Error: reference genbank file doesn't exist: ",ref_gb," \n")
if(!file.exists(ref_fa)) stop("Error: reference fasta file doesn't exist: ",ref_fa," \n")
if(!file.exists(id_file)) stop("Error: sample ID file doesn't exist: ",id_file," \n")
if(kmer_type!="protein" & kmer_type!="nucleotide") stop("Error: kmer type must be either 'protein' or 'nucleotide'","\n")
if(is.na(kmer_length)) stop("Error: kmer length must be an integer","\n")
if(is.na(minor_allele_threshold)) stop("Error: minor allele threshold must be a number","\n")
if(!file.exists(software_file)) stop("Error: software file doesn't exist","\n")
if(blastident>100 | blastident <0) stop("Error: blast identity threshold must be between 0-100","\n")
if(!is.null(annotateGeneFile)) if(!file.exists(annotateGeneFile)) stop("Error: annotate gene file doesn't exist","\n")
if(!is.logical(override_signif)) stop("Error: override_signif must be a logical","\n")
# Read in software file
software_paths = read.table(software_file, h = T, sep = "\t", quote = "")
# Required software and script paths
# Begin with software
required_software = c("scriptpath", "genoPlotR", "blast")
if(any(is.na(match(required_software, as.character(software_paths$name))))) stop(paste0("Error: missing required software path in the software file - requires ",paste(required_software, collapse = ", ")),"\n")
# Get the script location and then create missing paths
script_location = as.character(software_paths$path)[which(tolower(as.character(software_paths$name))=="scriptpath")]
if(!dir.exists(script_location)) stop("Error: script location directory specified in the software paths file doesn't exist","\n")
sequence_functions_Rfile = file.path(script_location, "sequence_functions.R")
if(!file.exists(sequence_functions_Rfile)) stop("Error: sequence_functions.R path doesn't exist - check pipeline script location in the software file","\n")
source(sequence_functions_Rfile, chdir = TRUE)
manhattan_functions_Rfile = file.path(script_location, "Manhattan_functions.R")
if(!file.exists(manhattan_functions_Rfile)) stop("Error: Manhattan_functions.R path doesn't exist - check pipeline script location in the software file","\n")
source(manhattan_functions_Rfile, chdir = TRUE)
alignment_functions_Rfile = file.path(script_location, "alignmentfunctions.R")
if(!file.exists(alignment_functions_Rfile)) stop("Error: alignmentfunctions.R path doesn't exist - check pipeline script location in the software file","\n")
genoPlotRlocation = as.character(software_paths$path)[which(tolower(as.character(software_paths$name))=="genoplotr")]
if(!dir.exists(genoPlotRlocation)) stop("Error: genoPlotR installation directory specified in the software paths file doesn't exist","\n")
library(genoPlotR, lib.loc = genoPlotRlocation)
blast_dir = as.character(software_paths$path)[which(tolower(as.character(software_paths$name))=="blast")]
if(!dir.exists(blast_dir)) stop("Error: blast installation directory specified in the software paths file doesn't exist","\n")
if(kmer_type =="protein") blastname = "blastp" else blastname = "blastn"
blastPath = file.path(blast_dir, blastname)
if(!file.exists(blastPath)) stop("Error: blast path",blastPath,"doesn't exist","\n")
# Report variables
cat("#############################################", "\n")
cat("Running on host: ",system("hostname", intern=TRUE),"\n")
cat("Command line arguments","\n")
cat(args, "\n\n")
cat("Parameters:","\n")
cat("Output prefix:", output_prefix,"\n")
cat("Analysis directory:", output_dir,"\n")
cat("Kmer file prefix:", kmerfilePrefix,"\n")
cat("Kmer pattern key size file:", kmerKeySizeFile,"\n")
cat("Kmer pattern index file:", kmerIndexFile,"\n")
cat("Kmer pattern presence count file:", kmerPresenceCountFile,"\n")
cat("Kmer list file:", kmerSeqFile,"\n")
cat("Reference genbank file:", ref_gb,"\n")
cat("Reference fasta file:", ref_fa,"\n")
cat("ID file path:", id_file,"\n")
cat("Kmer type:", kmer_type, "\n")
cat("Kmer length:", kmer_length,"\n")
cat("Minor allele threshold:", minor_allele_threshold,"\n")
cat("BLAST alignment minimum % identity:", blastident,"\n")
cat("Number of top genes to output:", ngenes, "\n")
cat("Software file:", software_file, "\n")
cat("Script location:", script_location, "\n")
cat("genoPlotR library installation directory:", genoPlotRlocation,"\n")
if(!is.null(annotateGeneFile)){
cat("Annotate gene file:", annotateGeneFile,"\n")
cat("Override significance threshold:", override_signif,"\n")
}
cat("#############################################", "\n\n")
# Create an output directory
figures_dir = create_figures_dir(dir = output_dir, kmer_type = kmer_type, kmer_length = kmer_length, alignmenttype = "bowtie2mapping")
# Get GEMMA input directory
gemma_dir = file.path(output_dir,paste0(kmer_type,"kmer",kmer_length,"_gemma"), "output/")
if(!dir.exists(gemma_dir)) stop("Error: gemma directory", gemma_dir," doesn't exist","\n")
if(!is.null(annotateGeneFile)) if(!file.exists(annotateGeneFile)) stop("Error: genes to annotate file does not exist","\n")
if(minor_allele_threshold==0){
cat("Assuming no minor allele threshold - plotting results for all kmers","\n")
macormaf = NULL
} else {
if(minor_allele_threshold<1){
cat("Minor allele threshold below 1 - reading as a minor allele frequency (MAF) threshold of:", minor_allele_threshold,"\n")
macormaf = "maf"
} else {
cat("Minor allele threshold above 1 - reading as a minor allele count (MAC) threshold of:", minor_allele_threshold,"\n")
macormaf = "mac"
}
}
# Read in sample IDs
# Read in ID file
id_file = read.table(id_file, h = T, sep = "\t")
ids = as.character(id_file$id)
pheno = as.numeric(id_file$pheno)
nsamples = length(which(!is.na(pheno)))
# Read in total number of kmer patterns
nPatterns = scan(kmerKeySizeFile, quiet = TRUE)
# Read in index
kmerIndex = scan(gzfile(kmerIndexFile), quiet = TRUE)
kmerIndex = as.numeric(kmerIndex)+1
cat("Read in number of patterns and kmer index", "\n")
cat("Number of kmers:", length(kmerIndex),"\n")
cat("Number of patterns:", nPatterns, "\n")
if(length(unique(kmerIndex))!=nPatterns) stop("Error: number of unique kmer indices does not equal the number of patterns","\n")
# Read in reference and gene look up
ref = read_ref_gbk(ref_gb = ref_gb)
ref_length = ref$ref_length
ref = ref$ref
# Get gene lookup
gene_lookup = create_gene_lookup(ref = ref, ref_length = ref_length)
ref.pos.gene.id = gene_lookup$ref.pos.gene.id
gene_lookup = gene_lookup$gene_lookup
# Read in gemma files
###########################
assoc = read_gemma_files(input_dir = gemma_dir, prefix = output_prefix, kmer_type = kmer_type, kmer_length = kmer_length, nPatterns = nPatterns)
## Read in MAF
###########################
# Read in pattern presence counts
macpatterns = scan(gzfile(kmerPresenceCountFile), what = numeric(0), sep = "\n", quiet = TRUE)
if(any(is.na(pheno))) cat(paste0("Calculating MAFs using number of samples with non NA phenotypes (",length(which(!is.na(pheno))), ") as denominator"),"\n")
length_nonNApheno = length(which(!is.na(pheno)))
macpatterns[which(macpatterns>(length_nonNApheno/2))] = length_nonNApheno-macpatterns[which(macpatterns>(length_nonNApheno/2))]
mac = macpatterns[kmerIndex]
mafpatterns = macpatterns/length_nonNApheno
maf = mafpatterns[kmerIndex]
cat("Read in pattern counts and converted into MAC and MAF", "\n")
# Define separate variable mapatterns and ma so don't have to look for mac/maf later on
if(macormaf=="maf"){
mapatterns = mafpatterns
ma = maf
} else {
mapatterns = macpatterns
ma = mac
}
## Get Bonferroni threshold
cat("Bonferroni threshold calculated using",macormaf,"threshold", minor_allele_threshold,"\n")
bonferroni = -log10(0.05/length(unique(kmerIndex[which(ma>= minor_allele_threshold & !is.na(assoc[kmerIndex,1]))])))
cat("Bonferroni threshold:",bonferroni,"\n")
## Plot QQ plots
###########################
plot_QQ(kmerIndex = kmerIndex, assoc = assoc, output_dir = figures_dir, prefix = output_prefix, minor_allele_threshold = 0, , macormaf = macormaf, mapatterns = mapatterns, kmer_type = kmer_type, kmer_length = kmer_length)
plot_QQ(kmerIndex = kmerIndex, assoc = assoc, output_dir = figures_dir, prefix = output_prefix, minor_allele_threshold = minor_allele_threshold, macormaf = macormaf, mapatterns = mapatterns, kmer_type = kmer_type, kmer_length = kmer_length)
## Read in alignment results
###########################
kmer_mapping = read_bowtie_pos(mappingFile = mappingFile, kmerIndex = kmerIndex, ref_length = ref_length)
final_kmer_pos_index = kmer_mapping$final_kmer_pos_index
final_kmer_pos = kmer_mapping$final_kmer_pos
rm(kmer_mapping)
# # Get the names of the genes/intergenic regions for each kmer
final_kmer_genes = sapply(final_kmer_pos, function(pos, ref, ref_length, ref.pos.gene.id) get_genes_for_kmers(ref = ref, pos = pos, ref_length = ref_length, ref.pos.gene.id = ref.pos.gene.id), ref = gene_lookup, ref_length = ref_length, ref.pos.gene.id = ref.pos.gene.id, USE.NAMES = F)
cat("Assigned genes/IRs to each kmer","\n")
### Plot Manhattan plots
###########################
## Get y position
ypos = as.numeric(assoc[,6])[kmerIndex[final_kmer_pos_index]]
cat("Got ypos","\n")
# Get plotting colours
# Get the type of phenotype - binary or continuous for the beta legend
pheno_type = get_pheno_type(pheno)
kmerCOLS = get_Manhattan_colours(final_kmer_pos_index = final_kmer_pos_index, assoc_patterns = assoc, kmerIndex = kmerIndex, colour_selection = colour_selection, ypos = ypos, bonferroni = bonferroni, mafpatterns = mafpatterns, pheno_type = pheno_type)
multialignCOL = kmerCOLS$multialignCOL
betaCOL = kmerCOLS$betaCOL
mafCOL = kmerCOLS$mafCOL
rm(kmerCOLS)
# PCH by alignment count
pch_standard = rep(1, length(final_kmer_pos))
# Subsample for faster plotting
# s = union(sample(c(1:length(final_kmer_pos)),1e6),which(ypos>2))
if(length(which(!is.na(ypos)))<1e6){
s = 1:length(ypos)
} else {
s = union(sample(c(which(!is.na(ypos))),1e6),which(ypos>2))
cat("Subsampling kmers below -log10(p)=2 for faster plotting, plotting",length(s),"kmers","\n")
}
xpos = final_kmer_pos[s]
ypos = ypos[s]
multialignCOL = multialignCOL[s]
betaCOL = betaCOL[s]
mafCOL = mafCOL[s]
ma = ma[final_kmer_pos_index[s]]
pch_standard = pch_standard[s]
# gene_names = sapply(xpos, function(pos, ref, ref_length) get_genes_for_kmers(ref = ref, pos = pos, ref_length = ref_length), ref = ref, ref_length = ref_length, USE.NAMES = F)
gene_names = final_kmer_genes[s]
### Top ngenes genes
###########################
# Find the top ngenes genes by p-value and store the gene name plus the most significant p-value per gene
gene_conversion = gene_names
names(gene_conversion) = gene_names
top20genes(gene_names = gene_names, ma = ma, minor_allele_threshold = minor_allele_threshold, ypos = ypos, macormaf = macormaf, output_dir = figures_dir, prefix = output_prefix, kmer_type = kmer_type, kmer_length = kmer_length, ref.name = ref.name)
# Plot
# multialignCOL (kmers above MAF threshold)
# betaCOL (kmers above MAF threshold)
# mafCOL (all kmers and kmers above threshold)
# How to colour each figure by name
filecol = c("alignCOL","betaCOL","mafCOL","mafCOL")
# Set which MAF threshold to plot for each figure
ma_threshold_all = c(minor_allele_threshold, minor_allele_threshold, 0, minor_allele_threshold)
# Colour vectors for each figure
allCOLS = list(multialignCOL, betaCOL, mafCOL, mafCOL)
# PCH vectors for each figure
# Could change the first to alignPosPCH - would need to create this
allPCH = list(pch_standard, pch_standard, pch_standard, pch_standard)
# # Alternate the y-axis limit between max in figure and ylimit of 50
# ylims_all = rep(list(NA, c(0, 50)), length(filecol)/2)
ylims_all = rep(list(NA), length(filecol))
legendtext = c("Bonferroni-corrected","significance threshold","")
legendcol = c("black","white","white")
legendtext_align = c("Multiple alignments","Single alignments")
legendtext_MAF = c("MAF < 0.01","0.01 \u2264 MAF < 0.05", "MAF \u2265 0.05")
legendtext_beta = c("\u03B2 < 0", "\u03B2 > 0")
redgrey = c(colour_selection[6], "grey50")
redbluegrey = c(colour_selection[6], colour_selection[5], "grey50")
redblue = c(colour_selection[6], colour_selection[5])
bluered = c(colour_selection[5], colour_selection[6])
redbluegreengrey = c(colour_selection[6], colour_selection[5], colour_selection[3],"grey50")
legendtext = list(c(legendtext, legendtext_align),
c(legendtext, legendtext_beta),
c(legendtext, legendtext_MAF),
c(legendtext, legendtext_MAF))
legendcol = list(c(legendcol, redgrey),
c(legendcol, bluered),
c(legendcol, redbluegreengrey),
c(legendcol, redbluegreengrey))
legendpch = c(rep(NA,3),rep(16,3))
legendlty = c(2,rep(NA,5))
ylims_options = c(NA, 50)
which_to_plot = c(1:length(filecol))
for(i in which_to_plot){
outfilename_prefix = paste0(figures_dir, output_prefix, "_", kmer_type, kmer_length, "_", ref.name, "_LMM_bowtie2mapping_Manhattan_", filecol[i],"_", macormaf, ma_threshold_all[i])
for(j in 1:length(ylims_options)){
if(is.na(ylims_options[j])){
outfilename = paste0(outfilename_prefix, ".png")
ylims.i = NULL
which_genes_to_annotate.i = which(!is.na(gene_names) & ma>=ma_threshold_all[i])
ma_threshold_pass = which(ma>=ma_threshold_all[i])
plot.i = TRUE
annotateGenerow = 0
} else {
outfilename = paste0(outfilename_prefix, "_ylim",ylims_options[j],".png")
ylims.i = c(0, ylims_options[j])
which_genes_to_annotate.i = which(!is.na(gene_names) & ypos<=max(ylims.i) & ma>=ma_threshold_all[i])
ma_threshold_pass = which(ma>=ma_threshold_all[i])
if(max(ypos, na.rm = T)<(max(ylims.i)+(max(ylims.i)/2))) plot.i = FALSE else plot.i = TRUE
annotateGenerow = max(ylims.i)
}
if(plot.i){
plot_manhattan(outfilename = outfilename, xpos = xpos, ma_threshold_pass = ma_threshold_pass, ypos = ypos, ylims.i = ylims.i, annotateGeneFile = annotateGeneFile, ref = ref, which_genes_to_annotate.i = which_genes_to_annotate.i, allCOLS = allCOLS, allPCH = allPCH, i = i, bonferroni = bonferroni, legendtext = legendtext, legendcol = legendcol, legendpch = legendpch, legendlty = legendlty, beta = as.numeric(assoc[,2]), gene_names = gene_names, gene_conversion = gene_conversion, pheno_type = pheno_type)
}
}
}
# Get kmers for top ngenes genes
which_genes_to_annotate.i = which(!is.na(gene_names) & ma>=(minor_allele_threshold))
topngenes = as.character(get_genes_to_plot(gene_names = gene_names[which_genes_to_annotate.i], y = ypos[which_genes_to_annotate.i], gene_conversion = gene_conversion[which_genes_to_annotate.i], ymax = 10, gene_panel = c(), ref = ref, ngenes = ngenes)[,1])
final_kmer_list = scan(gzfile(kmerSeqFile), what = character(0), sep = "\n", quiet = TRUE)
cat("Writing unaligned significant kmers to file","\n")
output_file_prefix = paste0(figures_dir, output_prefix, "_", kmer_type, kmer_length, "_", ref.name, "_", macormaf,"_", minor_allele_threshold,"_bowtie2mapping")
# Write unaligned significant kmers to file
wh.i = which(final_kmer_pos>ref_length)
output_file = paste0(output_file_prefix,"_unaligned_kmersandpvals.txt")
write_top_gene_kmers_to_file(wh.i = wh.i, final_kmer_list = final_kmer_list, final_kmer_pos_index = final_kmer_pos_index, assoc = assoc, kmerIndex = kmerIndex, mac = mac, output_file = output_file)
# If the annotate gene file has been provided, read in the gene names to annotate
# and annotate them on the Manhattan plot, and create files containing all kmers
# assigned to those genes/IRs
# Otherwise, do this for the ngenes most significant genes/IRs
# Feed them into the alignment figures
if(!is.null(annotateGeneFile)){
# Write provided gene names to file
cat("Writing kmers for gene names in", annotateGeneFile,"to file","\n")
annotateGene = scan(annotateGeneFile, what = character(0), sep = "\n", quiet = TRUE)
namedgenes_outputfiles = paste0(output_file_prefix,"_namedgene_",1:length(annotateGene),"_", annotateGene,"_kmersandpvals.txt")
for(i in 1:length(annotateGene)){
# Which kmers are within gene i
wh.i = which(final_kmer_genes==annotateGene[i])
# wh.i = which_kmers_in_genes(ref = gene_lookup, pos = final_kmer_pos, ref_length = ref_length, gene = annotateGene[i], flanking = 0)
output_file = namedgenes_outputfiles[i]
write_top_gene_kmers_to_file(wh.i = wh.i, final_kmer_list = final_kmer_list, final_kmer_pos_index = final_kmer_pos_index, assoc = assoc, kmerIndex = kmerIndex, mac = mac, output_file = output_file)
}
# Define the gene names to be fed into alignment function
genes_all = list("genes" = namedgenes_outputfiles, "genes_names" = annotateGene)
} else {
# Write top genes to file
cat(paste("Writing kmers for top",ngenes,"genes to file"),"\n")
topgenes_outputfiles = paste0(output_file_prefix,"_topgene_",1:length(topngenes),"_", topngenes,"_kmersandpvals.txt")
for(i in 1:length(topngenes)){
# Which kmers are within gene i
wh.i = which(final_kmer_genes==topngenes[i])
# wh.i = which_kmers_in_genes(ref = gene_lookup, pos = final_kmer_pos, ref_length = ref_length, gene = topngenes[i], flanking = 0)
output_file = topgenes_outputfiles[i]
write_top_gene_kmers_to_file(wh.i = wh.i, final_kmer_list = final_kmer_list, final_kmer_pos_index = final_kmer_pos_index, assoc = assoc, kmerIndex = kmerIndex, mac = mac, output_file = output_file)
}
# Define the gene names to be fed into alignment function
genes_all = list("genes" = topgenes_outputfiles, "genes_names" = topngenes)
}
## Plot close up alignments
source(alignment_functions_Rfile, chdir = TRUE)
plot_closeup_alignments(ref = ref, ref_length = ref_length, ref_gb = ref_gb, ref_fa = ref_fa, figures_dir = figures_dir, output_prefix = output_prefix, ngenes = ngenes, nsamples = nsamples, bonferroni = bonferroni, gene_lookup = gene_lookup, oneLetterCodes = oneLetterCodes, kmer_type = kmer_type, kmer_length = kmer_length, blastPath = blastPath, perident = blastident, col_lib_nuc = col_lib_nuc, col_lib_pro = col_lib_pro, ref.name = ref.name, alignmenttype = "bowtie2mapping", override_signif = override_signif, genes_all = genes_all)
cat("Finished in",(proc.time()[3]-start.time)/60,"minutes\n")