forked from nilboy/pixel-recursive-super-resolution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
136 lines (123 loc) · 4.87 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
def conv2d(inputs, num_outputs, kernel_shape, strides=[1, 1], mask_type=None, scope="conv2d"):
"""
Args:
inputs: nhwc
kernel_shape: [height, width]
mask_type: None or 'A' or 'B' or 'C'
Returns:
outputs: nhwc
"""
with tf.variable_scope(scope) as scope:
kernel_h, kernel_w = kernel_shape
stride_h, stride_w = strides
batch_size, height, width, in_channel = inputs.get_shape().as_list()
center_h = kernel_h // 2
center_w = kernel_w // 2
assert kernel_h % 2 == 1 and kernel_w % 2 == 1, "kernel height and width must be odd number"
mask = np.zeros((kernel_h, kernel_w, in_channel, num_outputs), dtype=np.float32)
if mask_type is not None:
#C
mask[:center_h, :, :, :] = 1
if mask_type == 'A':
mask[center_h, :center_w, :, :] = 1
"""
mask[center_h, :center_w, :, :] = 1
#G channel
mask[center_h, center_w, 0:in_channel:3, 1:num_outputs:3] = 1
#B Channel
mask[center_h, center_w, 0:in_channel:3, 2:num_outputs:3] = 1
mask[center_h, center_w, 1:in_channel:3, 2:num_outputs:3] = 1
"""
if mask_type == 'B':
mask[center_h, :center_w+1, :, :] = 1
"""
mask[center_h, :center_w, :, :] = 1
#R Channel
mask[center_h, center_w, 0:in_channel:3, 0:num_outputs:3] = 1
#G channel
mask[center_h, center_w, 0:in_channel:3, 1:num_outputs:3] = 1
mask[center_h, center_w, 1:in_channel:3, 1:num_outputs:3] = 1
#B Channel
mask[center_h, center_w, :, 2:num_outputs:3] = 1
"""
else:
mask[:, :, :, :] = 1
weights_shape = [kernel_h, kernel_w, in_channel, num_outputs]
weights = tf.get_variable("weights", weights_shape,
tf.float32, tf.truncated_normal_initializer(stddev=0.1))
weights = weights * mask
biases = tf.get_variable("biases", [num_outputs],
tf.float32, tf.constant_initializer(0.0))
outputs = tf.nn.conv2d(inputs, weights, [1, stride_h, stride_w, 1], padding="SAME")
outputs = tf.nn.bias_add(outputs, biases)
return outputs
def gated_conv2d(inputs, state, kernel_shape, scope):
"""
Args:
inputs: nhwc
state: nhwc
kernel_shape: [height, width]
Returns:
outputs: nhwc
new_state: nhwc
"""
with tf.variable_scope(scope) as scope:
batch_size, height, width, in_channel = inputs.get_shape().as_list()
kernel_h, kernel_w = kernel_shape
#state route
left = conv2d(state, 2 * in_channel, kernel_shape, strides=[1, 1], mask_type='C', scope="conv_s1")
left1 = left[:, :, :, 0:in_channel]
left2 = left[:, :, :, in_channel:]
left1 = tf.nn.tanh(left1)
left2 = tf.nn.sigmoid(left2)
new_state = left1 * left2
left2right = conv2d(left, 2 * in_channel, [1, 1], strides=[1, 1], scope="conv_s2")
#input route
right = conv2d(inputs, 2 * in_channel, [1, kernel_w], strides=[1, 1], mask_type='B', scope="conv_r1")
right = right + left2right
right1 = right[:, :, :, 0:in_channel]
right2 = right[:, :, :, in_channel:]
right1 = tf.nn.tanh(right1)
right2 = tf.nn.sigmoid(right2)
up_right = right1 * right2
up_right = conv2d(up_right, in_channel, [1, 1], strides=[1, 1], mask_type='B', scope="conv_r2")
outputs = inputs + up_right
return outputs, new_state
def batch_norm(x, train=True, scope=None):
return tf.contrib.layers.batch_norm(x, center=True, scale=True, updates_collections=None, is_training=train, trainable=True, scope=scope)
def resnet_block(inputs, num_outputs, kernel_shape, strides=[1, 1], scope=None, train=True):
"""
Args:
inputs: nhwc
num_outputs: int
kernel_shape: [kernel_h, kernel_w]
Returns:
outputs: nhw(num_outputs)
"""
with tf.variable_scope(scope) as scope:
conv1 = conv2d(inputs, num_outputs, kernel_shape, strides=[1, 1], mask_type=None, scope="conv1")
bn1 = batch_norm(conv1, train=train, scope='bn1')
relu1 = tf.nn.relu(bn1)
conv2 = conv2d(relu1, num_outputs, kernel_shape, strides=[1, 1], mask_type=None, scope="conv2")
bn2 = batch_norm(conv2, train=train, scope='bn2')
output = inputs + bn2
return output
def deconv2d(inputs, num_outputs, kernel_shape, strides=[1, 1], scope="deconv2d"):
"""
Args:
inputs: nhwc
num_outputs: int
kernel_shape: [kernel_h, kernel_w]
strides: [stride_h, stride_w]
Returns:
outputs: nhwc
"""
with tf.variable_scope(scope) as scope:
return tf.contrib.layers.convolution2d_transpose(inputs, num_outputs, kernel_shape, strides, \
padding='SAME', weights_initializer=tf.truncated_normal_initializer(stddev=0.1), \
biases_initializer=tf.constant_initializer(0.0))