Skip to content

ekwan/zhulong

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Zhulong

Autonomous optimization code. This code provides code to run autonomous optimization with a ChemSpeed Robot and an Agilent UPLC system.

An Autonomous Optimization

Here's how to set up and run autonomous optimization experiments. You can find this code in zhulong/zhulong_optimizer.py.

Here are the required imports:

from experiment import Reagent, ParameterSpace, Experiment
from chemstation import Peak, get_yield_function
from chemspeed import ChemSpeed

First, define the starting material and reagents:

# define the starting material
starting_material = Reagent(
    name="starting material",
    abbreviation="SM",
    min_volume=80,
    max_volume=80,
    concentration=0.250)

# define the reagents
# assume we will pick one of these
# reagents should have the same min/max volumes and stock solution
# concentrations
min_volume = 80       # uL
max_volume = 120      # uL
concentration = 0.250  # M
NBS = Reagent(
    name="NBS",
    abbreviation="NBS",
    min_volume=min_volume,
    max_volume=max_volume,
    concentration=concentration)
DBDMH = Reagent(
    name="DBDMH",
    abbreviation="DBDMH",
    min_volume=min_volume,
    max_volume=max_volume,
    concentration=concentration)
reagents = [NBS, DBDMH]

Starting materials must have a fixed volume. Reagents can have any volume in their allowed range; makeup solvent will be computed later to ensure every experiment has a constant volume.

Now, let's define the additives and solvents:

# define the additives
# assume we will pick one of these
# additives should have the same min/max volumes and stock solution
# concentrations
min_volume = 2        # uL
max_volume = 50       # uL
concentration = 0.100  # M
hydrochloric_acid = Reagent(
    name="hydrochloric acid",
    abbreviation="HCl",
    min_volume=min_volume,
    max_volume=max_volume,
    concentration=concentration)
sulfuric_acid = Reagent(
    name="sulfuric acid",
    abbreviation="H2SO4",
    min_volume=min_volume,
    max_volume=max_volume,
    concentration=concentration)
picolinic_acid = Reagent(
    name="picolinic acid",
    abbreviation="Picolinic",
    min_volume=min_volume,
    max_volume=max_volume,
    concentration=concentration)
phenylphosphonic_acid = Reagent(
    name="phenylphosphonic acid",
    abbreviation="Phenylphosphonic",
    min_volume=min_volume,
    max_volume=max_volume,
    concentration=concentration)
phosphoric_acid = Reagent(
    name="phosphoric acid",
    abbreviation="Phosphoric",
    min_volume=min_volume,
    max_volume=max_volume,
    concentration=concentration)
lactic_acid = Reagent(
    name="lactic acid",
    abbreviation="Lactic",
    min_volume=min_volume,
    max_volume=max_volume,
    concentration=concentration)
acetic_acid = Reagent(
    name="acetic acid",
    abbreviation="Acetic",
    min_volume=min_volume,
    max_volume=max_volume,
    concentration=concentration)
water = Reagent(
    name="water",
    abbreviation="Water",
    min_volume=min_volume,
    max_volume=max_volume,
    concentration=concentration)
additives = [
    hydrochloric_acid,
    sulfuric_acid,
    picolinic_acid,
    phenylphosphonic_acid,
    phosphoric_acid,
    lactic_acid,
    acetic_acid,
    water]

# define the solvents
# assume we will pick one of these
solvents = ["MeCN", "DMC"]

Notice that the starting materials, reagents, and additives are all of type Reagent but solvents are of type str.

Now, we'll define the parameter space:

# define the parameter space to optimize over
parameter_space = ParameterSpace(starting_material, reagents, solvents,
                                 additives, light_stages=5,
                                 total_volume=350,
                                 # add solvent to make the final volume in each
                                 # experiment 250 uL
                                 min_temperature=5,         # in C
                                 max_temperature=35,       # in C
                                 temperature_step_size=5   # in C
                                 )

# for convenience, here is a dictionary containing the bounds
# bounds_dict = parameter_space.get_bounds_dict()
# bounds_dict_string = json.dumps(bounds_dict, indent=2)
# print(bounds_dict_string)

Now, we'll define the UPLC peaks of interest:

# define UPLC peaks
starting_material_peak = Peak(
    name="starting material",
    min_retention_time=0.92,
    max_retention_time=1.07)
product_peak = Peak(
    name="bromo product",
    min_retention_time=1.20,
    max_retention_time=1.35)
dibromo_peak = Peak(
    name="dibromo product",
    min_retention_time=1.42,
    max_retention_time=1.52)
# internal_standard_peak = Peak(
#     name="internal standard",
#     min_retention_time=1.00,
#     max_retention_time=1.10)

Then, we need to calculate the chemical yield:

# convert the ratio of the product peak over the internal standard peak to the chemical yield via the yield function
# in this project, we simply report UPLC area % of the product peak
yield_function = get_yield_function(
    product_peak,
    internal_standard_peak=None,
    response_factor=1.0)

Next, we create an object to represent the ChemSpeed robot and define the yield and plateau functions:

chemspeed = ChemSpeed(
    chemspeed_csv_filename="Z:\\TEST\\Closed Loop APO.csv",
    chemstation_folder="C:\\Users\\Public\\Documents\\ChemStation\\2\\Data\\Chemspeed\\Chemspeed*\\",
    yield_function=yield_function,
    plateau_function=plateau_function_1,
    overwrite_existing_chemspeed_csv=True,
    ignore_existing_chemstation_folders=True,
    polling_interval=1)

Dispense volumes will calculated and written to Closed Loop APO.csv for importing into the Chemspeed robot software once the experimental parameters are defined by the optimizer.

Now we define the optimization method, initialization method, and acquisition function:

# get the parameter bounds and define the optimization method
# a unique acquisition function can be defined for each optimization round
parameter_bounds = parameter_space.get_bounds_dict()
method = 'BO'  # or 'RS' or 'LM'
initMethod = 'batch8'  # 'random' or 'batch8' for LM and BO
acquisition = 'PI'  # 'EI', 'PI' or 'UCB' for BO, and 'Pred' for LM
acquisition_list = [
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI',
    'PI',
    'UCB',
    'EI']
n_total = 48  # total iterations
all_experiments = []

Then we get a new set of parameters for each experimental round:

dat = pd.DataFrame()
f_best = 0
for r in range(n_total):
    # get a set of new parameters for round r
    # para_r = optimization(dat, parameter_bounds,method, seed = 1234, initMethod = initMethod)
    para_r = optimization(
        dat,
        parameter_bounds,
        method,
        seed=1234,
        initMethod=initMethod,
        acquisition=acquisition_list[r])
    df_para_r = pd.DataFrame({k: [v] for k, v in para_r.items()})
    # define an experiment object for this round
    experiment_r = Experiment.create(
        parameter_space,
        solvent=para_r['Solvent'],
        temperature=int(para_r['Temperature']),
        starting_material_volume=80,
        reagent=para_r['Reagent'],
        reagent_equivalents=para_r['Reagent_equiv'],
        additive=para_r['Additive'],
        additive_mole_percent=para_r['AdditiveLoading'],
        light_stage=para_r['Stage'])
    # print the experiment for this round
    print("running experiment")
    print(experiment_r)
    chemspeed.run_experiment(experiment_r)
    history = experiment_r.history
    print("final result is:")
    print(f"{history['times']=}")
    print(f"{history['values']=}")
    # save the experiment for this round
    all_experiments.append(experiment_r)
    with open("APO_timecourse.pkl", "wb") as file:
        pickle.dump(all_experiments, file)
    f_r = history['values'][-1]
    f_best = max(f_best, f_r)
    df_para_r = df_para_r.assign(
        f=f_r, f_best=f_best, Round=(
            r + 1), method=method)
    dat = pd.concat([dat, df_para_r], ignore_index=True)
    print("Round: ", r + 1, "f: ", f_r, "f_best", f_best, "\n")
    dat.to_csv("dat.csv")

The output for each experimental round is:

Round:  1 	 Optimization method: BO 	 Aquisition function:  PI
Batch of 8 diverse initial points with seed: 1234
running experiment
solv=DMC (164 uL) temp=20°C SM = 80 uL reagent=DBDMH (vol=80 uL, 1.00 equiv) additive=H2SO4 (vol=26 uL, 13 mol%) light=2

The code checks the chemstation_folder for new .D folders every polling_interval seconds. If ignore_existing_chemstation_folders is set to True, then all the .D folders that exist when the ChemSpeed object is initialized are ignored.

Once the plateau algorithm determines that a reaction plateau is reached, the final result is reported.

The output for each experimental round is:

found folder C:\Users\Public\Documents\ChemStation\2\Data\Chemspeed\Chemspeed 2022-05-12 16-00-50 - 10 Rounds - Copy\0312650-0725-001.D
parsing C:\Users\Public\Documents\ChemStation\2\Data\Chemspeed\Chemspeed 2022-05-12 16-00-50 - 10 Rounds - Copy\0312650-0725-001.D

Found C:\Users\Public\Documents\ChemStation\2\Data\Chemspeed\Chemspeed 2022-05-12 16-00-50 - 10 Rounds - Copy\0312650-0725-001.D/Report.TXT...parsing...
yield is 67.4741 (recorded at 1666358105.6932242 s since the epoch)
Plateau Algorithm No.1
plateaued=False

found folder C:\Users\Public\Documents\ChemStation\2\Data\Chemspeed\Chemspeed 2022-05-12 16-00-50 - 10 Rounds - Copy\0312650-0725-002.D
parsing C:\Users\Public\Documents\ChemStation\2\Data\Chemspeed\Chemspeed 2022-05-12 16-00-50 - 10 Rounds - Copy\0312650-0725-002.D

Found C:\Users\Public\Documents\ChemStation\2\Data\Chemspeed\Chemspeed 2022-05-12 16-00-50 - 10 Rounds - Copy\0312650-0725-002.D/Report.TXT...parsing...
yield is 81.8419 (recorded at 1666358106.1884985 s since the epoch)
Plateau Algorithm No.1
plateaued=False

found folder C:\Users\Public\Documents\ChemStation\2\Data\Chemspeed\Chemspeed 2022-05-12 16-00-50 - 10 Rounds - Copy\0312650-0725-003.D
parsing C:\Users\Public\Documents\ChemStation\2\Data\Chemspeed\Chemspeed 2022-05-12 16-00-50 - 10 Rounds - Copy\0312650-0725-003.D

Found C:\Users\Public\Documents\ChemStation\2\Data\Chemspeed\Chemspeed 2022-05-12 16-00-50 - 10 Rounds - Copy\0312650-0725-003.D/Report.TXT...parsing...
yield is 81.9339 (recorded at 1666358106.6911287 s since the epoch)
Plateau Algorithm No.1
plateaued=True
final result is:
history['times']=[1666358105.6932242, 1666358106.1884985, 1666358106.6911287]
history['values']=[67.4741, 81.8419, 81.9339]
Round:  1 f:  81.9339 f_best 81.9339 

Authors

Melodie Christensen, Eugene Kwan, Yuting Xu

About

autonomous optimization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published