-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAssistiveOptimization.py
322 lines (274 loc) · 12.8 KB
/
AssistiveOptimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#!/usr/bin/env python
# coding: utf-8
#######################################################
# IMPORTS
#######################################################
import os,sys
import torch
from torch import nn
import numpy as np
from torchvision import models as model
from advertorch.utils import NormalizeByChannelMeanStd
from tqdm.notebook import tqdm
from PIL import Image
from plot_image_grid import image_grid
from robustness import model_utils
from robustness.datasets import ImageNet
import matplotlib.pyplot as plt
from termcolor import colored
import pathlib
current_path = pathlib.Path().absolute()
# Util function for loading meshes
from pytorch3d.io import load_objs_as_meshes, save_obj
# Data structures and functions for rendering
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
look_at_view_transform,
FoVPerspectiveCameras,
PointLights,
DirectionalLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
SoftSilhouetteShader,
SoftPhongShader,
TexturesVertex
)
#######################################################
# FUNCTIONS & HELPERS
#######################################################
class HiddenPrints:
def __enter__(self):
self._original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout.close()
sys.stdout = self._original_stdout
def create_folder(path):
try:
os.makedirs(path)
except FileExistsError:
# directory already exists
pass
#######################################################
# Initialize Assistive-Based Optimization
#######################################################
class AssistiveTexturization():
def __init__(self, model_name, n_views, inter_cam, lights, image_size=224):
super().__init__()
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.n_views = n_views
self.image_size = image_size
self.model_name = model_name
self.inter_cam = inter_cam
self.lights = lights.to(self.device)
#########################################################
# MODELS: Pretrained
#########################################################
vgg = model.vgg16(pretrained=True)
resnet = model.resnet50(pretrained=True)
densenet = model.densenet121(pretrained=True)
squeezenet = model.squeezenet1_0(pretrained=True)
shufflenet = model.shufflenet_v2_x1_0(pretrained=True)
mobilenet = model.mobilenet_v2(pretrained=True)
self.networks = {
'vgg': vgg,
'resnet': resnet,
'densenet': densenet,
'squeezenet': squeezenet,
'mobilenet': mobilenet,
'shufflenet': shufflenet,
}
#########################################################
# NORMALIZE
#########################################################
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
self.normalize = NormalizeByChannelMeanStd(mean, std)
def get_model(self, model_name):
return nn.Sequential(self.normalize, self.networks[model_name].eval()).to(self.device)
def _get_renderers(self):
# Cameras
dist, elev_start, elev_end, azim_start, azim_end = self.inter_cam
elev = torch.linspace(elev_start, elev_end, self.n_views).to(self.device)
azim = torch.linspace(azim_start, azim_end, self.n_views).to(self.device)
R, T = look_at_view_transform(dist=dist, elev=elev, azim=azim)
cameras = FoVPerspectiveCameras(device=self.device, R=R.to(self.device), T=T.to(self.device)).to(self.device)
# Differentiable soft renderer using per vertex RGB colors for texture
sigma = 1e-4
raster_settings_soft = RasterizationSettings(
image_size=self.image_size,
blur_radius=0.0,
faces_per_pixel=1,
)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings_soft
),
shader=SoftPhongShader(device=self.device,
cameras=cameras,
lights=self.lights)
)
return renderer, R,T
def texturize(self, init_color, path_current, obj_filename, target, n_iter=500, lr=1e-2,show_every=100):
#torch.autograd.set_detect_anomaly(True)
target_batch = torch.LongTensor([target]*self.n_views).to(self.device)
# Load Object
# Initialize Sphere (Source Mesh)
src_mesh = load_objs_as_meshes([obj_filename], device=self.device)
# We scale normalize and center the target mesh to fit in a sphere of radius 1
# centered at (0,0,0). (scale, center) will be used to bring the predicted mesh
# to its original center and scale. Note that normalizing the target mesh,
# speeds up the optimization but is not necessary!
verts = src_mesh.verts_packed()
N = verts.shape[0]
center = verts.mean(0)
scale = max((verts - center).abs().max(0)[0])
src_mesh.offset_verts_(-center.expand(N, 3))
src_mesh.scale_verts_((1.0 / float(scale)));
# We will learn to deform the source mesh by offsetting its vertices
# The shape of the deform parameters is equal to the total number of vertices in
# src_mesh
verts_shape = src_mesh.verts_packed().shape
deform_verts = torch.full(verts_shape, 0.0, device=self.device, requires_grad=True)
# We will also learn per vertex colors for our sphere mesh that define texture
# of the mesh
rgb_color = torch.FloatTensor(init_color) / 255.
verts_rgb = torch.full([1, verts_shape[0], 3], 0.5, device=self.device, requires_grad=False)
verts_rgb[...,:] = torch.FloatTensor(rgb_color).to(self.device)
verts_rgb.requires_grad = True
opt = torch.optim.Adam([verts_rgb], lr=lr)
# Loss Function
criterion = torch.nn.CrossEntropyLoss()
#########################################################
# PREPARE OPTIMIZATION LOOP
#########################################################
net = self.get_model(self.model_name)
loop = tqdm(range(n_iter))
renderer, R, T = self._get_renderers()
target_cameras = FoVPerspectiveCameras(device=self.device, R=R, T=T)
# Show original model
# Show Baseline
with torch.no_grad():
meshes = src_mesh.extend(self.n_views)
images_predicted = renderer(meshes, cameras=target_cameras, lights=self.lights)
# Fix Problem with NaN values
images_predicted[torch.isnan(images_predicted)] = 1
predicted_rgb = images_predicted[..., :3].permute(0,3,1,2)
output = net(predicted_rgb)
pred = nn.functional.softmax(output, dim=1).topk(1)
cls = list(torch.flatten(pred[1]).cpu().numpy())
scores = list(torch.flatten(pred[0]).cpu().numpy())
res = {f'Image_{i}_Pred:{cls[i]}': scores[i] for i in range(len(cls))}
print('Prediction Baseline')
for i in range(len(cls)):
color = "red" if int(cls[i]) != int(target) else "green"
print(f'Prediction Image_{i}_Pred:{cls[i]}, Score:', colored(scores[i],color))
image_grid(images_predicted.cpu().numpy(), rows=1, cols=self.n_views, rgb=True)
plt.show()
for i in loop:
loss = torch.tensor(0.0, device=self.device)
# Initialize optimizer
opt.zero_grad()
# Deform the mesh
new_src_mesh = src_mesh.offset_verts(deform_verts)
# Add per vertex colors to texture the mesh
new_src_mesh.textures = TexturesVertex(verts_features=torch.clamp(verts_rgb,0.0,1.0))
#########################################################
# MULTIVIEW OPTIMIZATION
#########################################################
images_predicted = renderer(new_src_mesh.extend(self.n_views), cameras=target_cameras, lights=self.lights)
# image from our dataset
predicted_rgb = images_predicted[..., :3].permute(0,3,1,2)
pred = net(predicted_rgb)
# Calculate Loss
loss += criterion(pred, target_batch).mean()
# Print the losses
loop.set_description(f"total_loss = {loss}")
# Optimization step
loss.backward()
opt.step()
with torch.no_grad():
if i == 0:
for i,image in enumerate(images_predicted.detach().cpu().numpy()[...,:3]):
im = Image.fromarray((image * 255).astype(np.uint8))
im.save(f"{path_current}/original_{i}.png")
# Deform the mesh
new_src_mesh = src_mesh.offset_verts(deform_verts)
# Add per vertex colors to texture the mesh
new_src_mesh.textures = TexturesVertex(verts_features=torch.clamp(verts_rgb,0.0,1.0))
with torch.no_grad():
meshes = new_src_mesh.extend(self.n_views)
images_predicted = renderer(meshes, cameras=target_cameras, lights=self.lights)
# Fix Problem with NaN values
images_predicted[torch.isnan(images_predicted)] = 1
predicted_rgb = images_predicted[..., :3].permute(0,3,1,2)
output = net(predicted_rgb)
pred = nn.functional.softmax(output, dim=1).topk(1)
cls = list(torch.flatten(pred[1]).cpu().numpy())
scores = list(torch.flatten(pred[0]).cpu().numpy())
print('Prediction Full Assistive Texture - Robust Design')
for i in range(len(cls)):
color = "red" if int(cls[i]) != int(target) else "green"
print(f'Prediction Image_{i}_Pred:{cls[i]}, Score:', colored(scores[i],color))
image_grid(images_predicted.cpu().numpy(), rows=1, cols=self.n_views, rgb=True)
plt.show()
return new_src_mesh
def run_texturization(settings):
lr = settings['lr']
n_iter = settings['n_iter']
device = settings['device']
n_views = settings['n_views']
image_size = settings['image_size']
#Loop Meshes
for mesh_name, params in settings['meshes'].items():
# Loop Classifiers
for model_name in settings['model_names']:
# Interpolation Camera settings
inter_cam = settings['meshes'][mesh_name]['inter_cam']
target = settings['meshes'][mesh_name]['target']
init_color = settings['meshes'][mesh_name]['init_color']
# Camera settings
dist, elev_start, elev_end, azim_start, azim_end = inter_cam
elev = torch.linspace(elev_start, elev_end, n_views).to(device)
azim = torch.linspace(azim_start, azim_end, n_views).to(device)
R, T = look_at_view_transform(dist=dist, elev=elev, azim=azim)
cameras = FoVPerspectiveCameras(device=device, R=R.to(device), T=T.to(device)).to(device)
# Differentiable soft renderer using per vertex RGB colors for texture
sigma = 1e-4
raster_settings_soft = RasterizationSettings(
image_size=image_size,
blur_radius=0.0,
faces_per_pixel=1,
)
# Place a point light in front of the object. As mentioned above, the front of
# the cow is facing the -z direction.
lights = PointLights(device=device, location=[[10.0, 10.0,10.0]])
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings_soft
),
shader=SoftPhongShader(device=device,
cameras=cameras,
lights=lights))
print('*'*50)
print(f'{mesh_name} - {model_name}')
print('*'*50)
print('Loading models...')
with HiddenPrints():
texture = AssistiveTexturization(model_name, n_views, inter_cam, lights)
path = f'{current_path}/outputs/{mesh_name}/'
# Create Folder
create_folder(path)
obj_filename = f'{os.getcwd()}/meshes/{mesh_name}/{mesh_name}.obj'
output_mesh = texture.texturize(init_color, path, obj_filename, target, n_iter, lr)
output_meshes = output_mesh.extend(n_views)
images_predicted = renderer(output_meshes, cameras=cameras, lights=lights)
# Save Images
for i,image in enumerate(images_predicted.detach().cpu().numpy()[...,:3]):
im = Image.fromarray((image * 255).astype(np.uint8))
im.save(f"{path}/output_{i}_{model_name}.png")