-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCMPT.py
executable file
·250 lines (206 loc) · 7.97 KB
/
CMPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 29 16:00:51 2016
@author: elena
"""
import numpy as np
import itertools
from joblib import Parallel, delayed, cpu_count
def test_permutation(activation_img, condition, modality, subj,
verbose=True, n_perm=10000, n_jobs=1, random_seed=0):
"""
Parameters
==========
activation_img: array, shape (n_samples, n_features)
The activation image (aka beta-map)
condition: integer array, shape (n_samples,)
The condition for every sample.
modality: integer array, shape (n_samples,)
Modality for each sample. For now this is limited to two
modalities.
subj: integer array, shape (n_samples,)
Array indicating to which subject do the activation_img
correspond. Correlations will only be computed within
the same subject. In case all images correspond to a single
subject set this array to a constant value.
n_perm : integer
number of permutations.
n_jobs: integer
number of processors to use (-1 for all).
Returns
=======
pval: float
T0 : test statistic
T_perm : all permuted statistics
"""
np.random.seed(random_seed)
condition = np.array(condition)
modality = np.array(modality)
subj = np.array(subj)
# check the data
n_samples, n_features = activation_img.shape
assert len(condition) == n_samples
assert len(modality) == n_samples
unique_modalities = np.unique(modality)
unique_conditions = np.unique(condition)
assert len(unique_modalities) == 2
# number of subjects
unique_sub = np.unique(subj)
if verbose:
print('%s subjects were given' % unique_sub.size)
# compute test statistic
T0 = 0.0
for s in unique_sub:
idx_sub = (subj == s)
img_cond_modality_1 = []
img_cond_modality_2 = []
idx_mod_1 = (modality[idx_sub] == unique_modalities[0])
idx_mod_2 = (modality[idx_sub] == unique_modalities[1])
for cond in unique_conditions:
idx_cond_m1 = (condition == cond) & idx_mod_1
idx_cond_m2 = (condition == cond) & idx_mod_2
img_cond_modality_1.append(activation_img[idx_cond_m1].mean(0))
img_cond_modality_2.append(activation_img[idx_cond_m2].mean(0))
img_cond_modality_1 = np.array(img_cond_modality_1)
img_cond_modality_2 = np.array(img_cond_modality_2)
T0 += test_stat(img_cond_modality_1, img_cond_modality_2)
# compute the permuted statistic
# all_permutations =
idx_2 = np.arange(n_samples)[modality == unique_modalities[0]]
all_permutations = [np.random.permutation(idx_2.size) for _ in range(n_perm)]
n_splits = n_jobs
if n_splits < 0:
n_splits = cpu_count()
all_permutations = np.array_split(all_permutations, n_splits)
all_T_perm = Parallel(n_jobs=n_jobs)(
delayed(_compute_perms)(
perm, n_samples, modality, unique_modalities, condition,
unique_sub, subj, unique_conditions, activation_img)
for perm in all_permutations)
T_perm = np.array(all_T_perm).ravel()
pval = 1 - (T0 >= T_perm).mean()
return pval, T0, T_perm
# helper routine for parallelization
def _compute_perms(perm, n_samples, modality, unique_modalities, condition,
unique_sub, subj, unique_conditions, activation_img):
T_perm = []
for p in perm:
T_subj = 0.0
idx_2 = np.arange(n_samples)[modality == unique_modalities[0]]
condition_perm = condition.copy()
condition_perm[idx_2] = condition_perm[idx_2][p]
for s in unique_sub:
idx_sub = (subj == s)
img_cond_modality_1 = []
img_cond_modality_2 = []
idx_mod_1 = (modality[idx_sub] == unique_modalities[0])
idx_mod_2 = (modality[idx_sub] == unique_modalities[1])
for cond in unique_conditions:
idx_1 = (condition_perm == cond) & idx_mod_1
idx_2 = (condition_perm == cond) & idx_mod_2
img_cond_modality_1.append(activation_img[idx_1].mean(0))
img_cond_modality_2.append(activation_img[idx_2].mean(0))
img_cond_modality_1 = np.array(img_cond_modality_1)
img_cond_modality_2 = np.array(img_cond_modality_2)
T_subj += test_stat(img_cond_modality_1, img_cond_modality_2)
T_perm.append(T_subj)
return T_perm
# test statistic
def test_stat(img_cond_modality_1, img_cond_modality_2):
"""
This is the test statistic used by the permutation test
Parameters
==========
img_cond_modality_1 : array, shape (n_conditions, n_features)
img_cond_modality_2 : array, shape (n_conditions, n_features)
"""
# print img_cond_modality_1.shape[0]
n_conditions = img_cond_modality_1.shape[0]
conditions = np.arange(n_conditions)
# print n_conditions
# initialize
within_condition_t = 0
within_condition_counter = 0
cross_condition_t = 0
cross_condition_counter = 0
# generate all pairwise comparisons
for (a, b) in itertools.product(conditions, conditions):
# print a, b
A = img_cond_modality_1[a]
# print A.shape
B = img_cond_modality_2[b]
# print B.shape
# print A[0:10]
# print B[0:10]
if a == b:
within_condition_counter += 1
within_condition_t += np.corrcoef(A, B)[0, 1]
# print within_condition_t
else:
cross_condition_counter += 1
cross_condition_t += np.corrcoef(A, B)[0, 1]
# print cross_condition_t
assert within_condition_counter > 0
assert cross_condition_counter > 0
ret = within_condition_t / float(within_condition_counter) - \
cross_condition_t / float(cross_condition_counter)
# print ret
assert np.isfinite(ret)
return ret
def generate_synthetic_data(n_samples, width, noise_amplitude=0.5, only_noise=False):
if only_noise:
w_A1 = np.zeros((width, width))
w_A2 = np.zeros((width, width))
w_B1 = np.zeros((width, width))
w_B2 = np.zeros((width, width))
else:
w_A1 = np.zeros((width, width))
w_A1[20:30, 20:30] = 1.
w_A1[160:170, 160:170] = 1.
w_A2 = np.zeros((width, width))
w_A2[20:30, 20:30] = 1.
# w_A2[50:60, 20:30] = 1.
w_A2[20:30, 160:170] = 1.
# w_A2[160:170, 20:30] = 1.
w_B1 = np.zeros((width, width))
w_B1[160:170, 20:30] = 1.
# w_B1[50:60, 20:30] = 1.
w_B1[160:170, 160:170] = 1.
w_B1[20:30, 160:170] = 1.
w_B2 = np.zeros((width, width))
w_B2[160:170, 20:30] = 1.
w_B2[20:30, 160:170] = 1.
ground_truth = (w_A1, w_A2, w_B1, w_B2)
samples_A1 = []
for i in range(n_samples):
tmp = w_A1 + noise_amplitude * np.random.randn(*w_A1.shape)
tmp = tmp.ravel()
# tmp -= np.mean(tmp)
# tmp /= np.std(tmp)
samples_A1.append(tmp.ravel())
samples_A2 = []
for i in range(n_samples):
tmp = w_A2 + noise_amplitude * np.random.randn(*w_A1.shape)
tmp = tmp.ravel()
# tmp -= np.mean(tmp)
# tmp /= np.std(tmp)
samples_A2.append(tmp.ravel())
samples_B1 = []
for i in range(n_samples):
tmp = w_B1 + noise_amplitude * np.random.randn(*w_A1.shape)
tmp = tmp.ravel()
# tmp -= np.mean(tmp)
# tmp /= np.std(tmp)
samples_B1.append(tmp.ravel())
samples_B2 = []
for i in range(n_samples):
tmp = w_B2 + noise_amplitude * np.random.randn(*w_A1.shape)
tmp = tmp.ravel()
# tmp -= np.mean(tmp)
# tmp /= np.std(tmp)
samples_B2.append(tmp.ravel())
samples = np.concatenate((samples_A1, samples_A2, samples_B1, samples_B2), axis=0)
assert np.isnan(samples).sum() == 0
condition = [0] * n_samples + [1] * n_samples + [0] * n_samples + [1] * n_samples
modality = [0] * (2 * n_samples) + [1] * (2 * n_samples)
return ground_truth, samples, condition, modality