forked from GoogleCloudPlatform/generative-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvais_utils.py
278 lines (237 loc) · 9.46 KB
/
vais_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Vertex AI Search Utilities"""
from os.path import basename
from google.cloud import discoveryengine_v1alpha as discoveryengine
JSON_INDENT = 2
def list_documents(
project_id: str,
location: str,
datastore_id: str,
) -> list[dict[str, str]]:
client = discoveryengine.DocumentServiceClient()
parent = client.branch_path(
project=project_id,
location=location,
data_store=datastore_id,
branch="default_branch",
)
request = discoveryengine.ListDocumentsRequest(parent=parent, page_size=10)
page_result = client.list_documents(request=request)
return [
{"id": document.id, "title": basename(document.content.uri)}
for document in page_result
]
def search_enterprise_search(
project_id: str,
location: str,
engine_id: str,
page_size: int = 50,
search_query: str | None = None,
image_bytes: bytes | None = None,
params: dict | None = None,
summary_model: str | None = None,
summary_preamble: str | None = None,
) -> tuple[list[dict[str, str | list]], str, str, str, str]:
if bool(search_query) == bool(image_bytes):
raise ValueError("Cannot provide both search_query and image_bytes")
# Create a client
client = discoveryengine.SearchServiceClient()
serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_config"
# Configuration options for search
content_search_spec = discoveryengine.SearchRequest.ContentSearchSpec(
snippet_spec=discoveryengine.SearchRequest.ContentSearchSpec.SnippetSpec(
return_snippet=True
),
summary_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec(
summary_result_count=5,
include_citations=True,
ignore_adversarial_query=True,
ignore_non_summary_seeking_query=True,
model_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec.ModelSpec(
version=summary_model
),
model_prompt_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec.ModelPromptSpec(
preamble=summary_preamble
),
),
extractive_content_spec=discoveryengine.SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
max_extractive_answer_count=1, max_extractive_segment_count=1
),
)
request = discoveryengine.SearchRequest(
serving_config=serving_config,
page_size=page_size,
content_search_spec=content_search_spec,
query_expansion_spec=discoveryengine.SearchRequest.QueryExpansionSpec(
condition=discoveryengine.SearchRequest.QueryExpansionSpec.Condition.AUTO,
),
spell_correction_spec=discoveryengine.SearchRequest.SpellCorrectionSpec(
mode=discoveryengine.SearchRequest.SpellCorrectionSpec.Mode.AUTO
),
params=params,
)
if search_query:
request.query = search_query
elif image_bytes:
request.image_query = discoveryengine.SearchRequest.ImageQuery(
image_bytes=image_bytes
)
try:
response_pager = client.search(request)
except Exception as exc:
raise exc
response = discoveryengine.SearchResponse(
results=response_pager.results,
facets=response_pager.facets,
guided_search_result=response_pager.guided_search_result,
total_size=response_pager.total_size,
attribution_token=response_pager.attribution_token,
next_page_token=response_pager.next_page_token,
corrected_query=response_pager.corrected_query,
summary=response_pager.summary,
)
request_url = (
f"https://discoveryengine.googleapis.com/v1alpha/{serving_config}:search"
)
request_json = discoveryengine.SearchRequest.to_json(
request,
including_default_value_fields=False,
use_integers_for_enums=False,
indent=JSON_INDENT,
)
response_json = discoveryengine.SearchResponse.to_json(
response,
including_default_value_fields=True,
use_integers_for_enums=False,
indent=JSON_INDENT,
)
results = get_enterprise_search_results(response)
summary = getattr(response.summary, "summary_text", "")
return results, summary, request_url, request_json, response_json
def get_enterprise_search_results(
response: discoveryengine.SearchResponse,
) -> list[dict[str, str | list]]:
"""
Extract Results from Enterprise Search Response
"""
ROBOT = "https://www.google.com/images/errors/robot.png"
def get_thumbnail_image(data: dict) -> str:
cse_thumbnail = data.get("pagemap", {}).get("cse_thumbnail")
image_link = data.get("image", {}).get("thumbnailLink")
if cse_thumbnail:
return cse_thumbnail[0]["src"]
if image_link:
return image_link
return ROBOT
def get_formatted_link(data: dict) -> str:
html_formatted_url = data.get("htmlFormattedUrl")
image_context_link = data.get("image", {}).get("contextLink")
link = data.get("link")
return html_formatted_url or image_context_link or link or ROBOT
return [
{
"title": result.document.derived_struct_data["title"],
"htmlTitle": result.document.derived_struct_data.get(
"htmlTitle", result.document.derived_struct_data["title"]
),
"link": result.document.derived_struct_data["link"],
"htmlFormattedUrl": get_formatted_link(result.document.derived_struct_data),
"displayLink": result.document.derived_struct_data["displayLink"],
"snippets": [
s.get("htmlSnippet", s.get("snippet", ""))
for s in result.document.derived_struct_data.get("snippets", [])
],
"extractiveAnswers": [
e["content"]
for e in result.document.derived_struct_data.get(
"extractive_answers", []
)
],
"extractiveSegments": [
e["content"]
for e in result.document.derived_struct_data.get(
"extractive_segments", []
)
],
"thumbnailImage": get_thumbnail_image(result.document.derived_struct_data),
"resultJson": discoveryengine.SearchResponse.SearchResult.to_json(
result, including_default_value_fields=True, indent=JSON_INDENT
),
}
for result in response.results
]
def recommend_personalize(
project_id: str,
location: str,
datastore_id: str,
serving_config_id: str,
document_id: str,
user_pseudo_id: str | None = "xxxxxxxxxxx",
attribution_token: str | None = None,
) -> tuple:
# Create a client
client = discoveryengine.RecommendationServiceClient()
# The full resource name of the search engine serving config
# e.g. projects/{project_id}/locations/{location}
serving_config = client.serving_config_path(
project=project_id,
location=location,
data_store=datastore_id,
serving_config=serving_config_id,
)
user_event = discoveryengine.UserEvent(
event_type="view-item",
user_pseudo_id=user_pseudo_id,
attribution_token=attribution_token,
documents=[discoveryengine.DocumentInfo(id=document_id)],
)
request = discoveryengine.RecommendRequest(
serving_config=serving_config,
user_event=user_event,
params={"returnDocument": True, "returnScore": True},
)
response = client.recommend(request)
request_url = (
f"https://discoveryengine.googleapis.com/v1beta/{serving_config}:recommend"
)
request_json = discoveryengine.RecommendRequest.to_json(
request, including_default_value_fields=False, indent=JSON_INDENT
)
response_json = discoveryengine.RecommendResponse.to_json(
response, including_default_value_fields=True, indent=JSON_INDENT
)
results = get_personalize_results(response)
return results, response.attribution_token, request_url, request_json, response_json
def get_storage_link(uri: str) -> str:
return uri.replace("gs://", "https://storage.googleapis.com/")
def get_personalize_results(
response: discoveryengine.RecommendResponse,
) -> list[dict]:
"""
Extract Results from Personalize Response
"""
return [
{
"id": result.id,
"title": basename(result.document.content.uri),
"htmlFormattedUrl": result.document.content.uri,
"link": get_storage_link(result.document.content.uri),
"mimeType": result.document.content.mime_type,
"resultJson": discoveryengine.RecommendResponse.RecommendationResult.to_json(
result, including_default_value_fields=True, indent=JSON_INDENT
),
}
for result in response.results
]