forked from GMvandeVen/brain-inspired-replay
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
589 lines (492 loc) · 35.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import numpy as np
import torch
from torch import nn
from torch.utils.data import ConcatDataset
import tqdm
import copy
import utils
from models.cl.continual_learner import ContinualLearner
def train(model, train_loader, iters, loss_cbs=list(), eval_cbs=list(), save_every=None, m_dir="./store/models",
args=None):
'''Train a model with a "train_a_batch" method for [iters] iterations on data from [train_loader].
[model] model to optimize
[train_loader] <dataloader> for training [model] on
[iters] <int> (max) number of iterations (i.e., batches) to train for
[loss_cbs] <list> of callback-<functions> to keep track of training progress
[eval_cbs] <list> of callback-<functions> to evaluate model on separate data-set'''
device = model._device()
# Should convolutional layers be frozen?
freeze_convE = (utils.checkattr(args, "freeze_convE") and hasattr(args, "depth") and args.depth>0)
# Create progress-bar (with manual control)
bar = tqdm.tqdm(total=iters)
iteration = epoch = 0
while iteration < iters:
epoch += 1
# Loop over all batches of an epoch
for batch_idx, (data, y) in enumerate(train_loader):
iteration += 1
# Perform training-step on this batch
data, y = data.to(device), y.to(device)
loss_dict = model.train_a_batch(data, y=y, freeze_convE=freeze_convE)
# Fire training-callbacks (for visualization of training-progress)
for loss_cb in loss_cbs:
if loss_cb is not None:
loss_cb(bar, iteration, loss_dict, epoch=epoch)
# Fire evaluation-callbacks (to be executed every [eval_log] iterations, as specified within the functions)
for eval_cb in eval_cbs:
if eval_cb is not None:
eval_cb(model, iteration, epoch=epoch)
# Break if max-number of iterations is reached
if iteration == iters:
bar.close()
break
# Save checkpoint?
if (save_every is not None) and (iteration % save_every) == 0:
utils.save_checkpoint(model, model_dir=m_dir)
def train_cl(model, train_datasets, replay_mode="none", scenario="task", rnt=None, classes_per_task=None,
iters=2000, batch_size=32, batch_size_replay=None, loss_cbs=list(), eval_cbs=list(), sample_cbs=list(),
generator=None, gen_iters=0, gen_loss_cbs=list(), feedback=False, reinit=False, args=None, only_last=False,
sample_method='random', curated_multiplier=4, variety_weight=0.5, mir_coef=0.1):
'''Train a model (with a "train_a_batch" method) on multiple tasks, with replay-strategy specified by [replay_mode].
[model] <nn.Module> main model to optimize across all tasks
[train_datasets] <list> with for each task the training <DataSet>
[replay_mode] <str>, choice from "generative", "current", "offline" and "none"
[scenario] <str>, choice from "task", "domain", "class" and "all"
[classes_per_task] <int>, # classes per task; only 1st task has [classes_per_task]*[first_task_class_boost] classes
[rnt] <float>, indicating relative importance of new task (if None, relative to # old tasks)
[iters] <int>, # optimization-steps (=batches) per task; 1st task has [first_task_iter_boost] steps more
[batch_size_replay] <int>, number of samples to replay per batch
[generator] None or <nn.Module>, if a seperate generative model should be trained (for [gen_iters] per task)
[feedback] <bool>, if True and [replay_mode]="generative", the main model is used for generating replay
[only_last] <bool>, only train on final task / episode
[*_cbs] <list> of call-back functions to evaluate training-progress
[sample_method] <str> indicating the sample method, choices: 'random', 'uniform', 'curated', 'softmax', 'interfered', 'misclassified'
[curated_multiplier]<int> choose curated samples out of size curated_multiplier * mutiply batch_size_replay
[variety_weight] <float> weight of variety loss as compared with regular loss
[mir_coef] <float> weight of previous model's cross entropy score for generated sample (encourages samples which the prior model is confident about)
'''
print("\nCurated multiplier: ", curated_multiplier)
print("\nVariety weight: ", variety_weight)
print("\nMIR coefficient: ", mir_coef)
# Should convolutional layers be frozen?
freeze_convE = (utils.checkattr(args, "freeze_convE") and hasattr(args, "depth") and args.depth>0)
# Use cuda?
device = model._device()
cuda = model._is_on_cuda()
# Set default-values if not specified
batch_size_replay = batch_size if batch_size_replay is None else batch_size_replay
# Initiate indicators for replay (no replay for 1st task)
Generative = Current = Offline_TaskIL = False
previous_model = None
# Register starting param-values (needed for "intelligent synapses").
if isinstance(model, ContinualLearner) and model.si_c>0:
for n, p in model.named_parameters():
if p.requires_grad:
n = n.replace('.', '__')
model.register_buffer('{}_SI_prev_task'.format(n), p.detach().clone())
# Loop over all tasks.
for task, train_dataset in enumerate(train_datasets, 1):
# If offline replay-setting, create large database of all tasks so far
if replay_mode=="offline" and (not scenario=="task"):
train_dataset = ConcatDataset(train_datasets[:task])
# -but if "offline"+"task": all tasks so far should be visited separately (i.e., separate data-loader per task)
if replay_mode=="offline" and scenario=="task":
Offline_TaskIL = True
data_loader = [None]*task
# Initialize # iters left on data-loader(s)
iters_left = 1 if (not Offline_TaskIL) else [1]*task
# Prepare <dicts> to store running importance estimates and parameter-values before update
if isinstance(model, ContinualLearner) and model.si_c>0:
W = {}
p_old = {}
for n, p in model.named_parameters():
if p.requires_grad:
n = n.replace('.', '__')
W[n] = p.data.clone().zero_()
p_old[n] = p.data.clone()
# Find [active_classes] (=classes in current task)
active_classes = None #-> for "domain"- or "all"-scenarios, always all classes are active
if scenario=="task":
# -for "task"-scenario, create <list> with for all tasks so far a <list> with the active classes
active_classes = [list(range(classes_per_task*i, classes_per_task*(i+1))) for i in range(task)]
elif scenario=="class":
# -for "class"-scenario, create one <list> with active classes of all tasks so far
active_classes = list(range(classes_per_task*task))
# Reinitialize the model's parameters (if requested)
if reinit:
from define_models import init_params
init_params(model, args)
if generator is not None:
init_params(generator, args)
# Define a tqdm progress bar(s)
iters_main = iters
progress = tqdm.tqdm(range(1, iters_main+1))
if generator is not None:
iters_gen = gen_iters
progress_gen = tqdm.tqdm(range(1, iters_gen+1))
# Loop over all iterations
iters_to_use = (iters_main if (generator is None) else max(iters_main, iters_gen))
# -if only the final task should be trained on:
if only_last and not task==len(train_datasets):
iters_to_use = 0
# This helps w/ speeding up curated_classVariety
mask = None
if (sample_method=="curated_classVariety" and (task-1)>0):
sampleAmt = batch_size_replay * curated_multiplier
classNum = classes_per_task*(task-1)
indexList = [[idx for idx in range(sampleAmt) if (idx%classNum) == (rowIdx%classNum)] for rowIdx in range(sampleAmt)]
mask = []
for rowIdxList in indexList:
curRow = [0] * sampleAmt
for idx in rowIdxList:
curRow[idx] = 1
mask.append(curRow)
mask = torch.tensor(mask, dtype=torch.float).to(device)
for batch_index in range(1, iters_to_use+1):
# Update # iters left on current data-loader(s) and, if needed, create new one(s)
if not Offline_TaskIL:
iters_left -= 1
if iters_left==0:
data_loader = iter(utils.get_data_loader(train_dataset, batch_size, cuda=cuda, drop_last=True))
iters_left = len(data_loader)
else:
# -with "offline replay" in Task-IL scenario, there is a separate data-loader for each task
batch_size_to_use = int(np.ceil(batch_size/task))
for task_id in range(task):
iters_left[task_id] -= 1
if iters_left[task_id]==0:
data_loader[task_id] = iter(utils.get_data_loader(
train_datasets[task_id], batch_size_to_use, cuda=cuda, drop_last=True
))
iters_left[task_id] = len(data_loader[task_id])
#-----------------Collect data------------------#
#####-----CURRENT BATCH-----#####
if not Offline_TaskIL:
x, y = next(data_loader) #--> sample training data of current task
y = y-classes_per_task*(task-1) if scenario=="task" else y #--> ITL: adjust y-targets to 'active range'
x, y = x.to(device), y.to(device) #--> transfer them to correct device
#y = y.expand(1) if len(y.size())==1 else y #--> hack for if batch-size is 1
else:
x = y = task_used = None #--> all tasks are "treated as replay"
# -sample training data for all tasks so far, move to correct device and store in lists
x_, y_ = list(), list()
for task_id in range(task):
x_temp, y_temp = next(data_loader[task_id])
x_.append(x_temp.to(device))
y_temp = y_temp - (classes_per_task * task_id) #--> adjust y-targets to 'active range'
if batch_size_to_use == 1:
y_temp = torch.tensor([y_temp]) #--> correct dimensions if batch-size is 1
y_.append(y_temp.to(device))
#####-----REPLAYED BATCH-----#####
if not Offline_TaskIL and not Generative and not Current:
x_ = y_ = scores_ = task_used = None #-> if no replay
#--------------------------------------------INPUTS----------------------------------------------------#
##-->> Current Replay <<--##
if Current:
x_ = x[:batch_size_replay] #--> use current task inputs
task_used = None
##-->> Generative Replay <<--##
if Generative:
#---> Only with generative replay, the resulting [x_] will be at the "hidden"-level
conditional_gen = True if (
(previous_generator.per_class and previous_generator.prior=="GMM") or
utils.checkattr(previous_generator, 'dg_gates')
) else False
# Sample [x_]
if conditional_gen and scenario=="task":
# -if a conditional generator is used with task-IL scenario, generate data per previous task
x_ = list()
task_used = list()
for task_id in range(task-1):
allowed_classes = list(range(classes_per_task*task_id, classes_per_task*(task_id+1)))
batch_size_replay_to_use = int(np.ceil(batch_size_replay / (task-1)))
x_temp_ = previous_generator.sample(batch_size_replay_to_use, allowed_classes=allowed_classes,
only_x=False)
x_.append(x_temp_[0])
task_used.append(x_temp_[2])
else:
# -which classes are allowed to be generated? (relevant if conditional generator / decoder-gates)
allowed_classes = None if scenario=="domain" else list(range(classes_per_task*(task-1)))
# -which tasks/domains are allowed to be generated? (only relevant if "Domain-IL" with task-gates)
allowed_domains = list(range(task-1))
# -generate inputs representative of previous tasks
# --- SAMPLE METHOD CHOICES: softmax, random, uniform, curated ---
# --- Softmax sampling: use previous model to score images from this new task, generate those classes
if sample_method == 'softmax':
with torch.no_grad():
curTaskID = task - 2
newScores_og = previous_model.classify(previous_model.input_to_hidden(x),
not_hidden=False if Generative else True)
newScores = newScores_og[:, :(classes_per_task * (curTaskID + 1))]
softmax = torch.nn.Softmax(dim=1)
scores_old = nn.Softmax(dim=1)(newScores)
avgError = torch.mean(scores_old, dim=0)
sampleProbs = torch.zeros(newScores_og.shape[1])
sampleProbs[:(classes_per_task * (curTaskID + 1))] = avgError[
:(classes_per_task * (curTaskID + 1))]
x_, y_used, task_used = previous_generator.sample(
batch_size_replay, allowed_classes=allowed_classes, allowed_domains=allowed_domains,
only_x=False, class_probs=sampleProbs,uniform_sampling=False)
# --- Uniformly random sampling (baseline) ---
elif sample_method == 'random':
x_, y_used, task_used = previous_generator.sample(
batch_size_replay, allowed_classes=allowed_classes, allowed_domains=allowed_domains,
only_x=False, class_probs=None, uniform_sampling=False)
# --- Uniform sampling: balanced numbers of samples from each class ---
elif sample_method == 'uniform':
x_, y_used, task_used = previous_generator.sample(
batch_size_replay, allowed_classes=allowed_classes, allowed_domains=allowed_domains,
only_x=False, class_probs=None, uniform_sampling=True)
# --- Uniform sample curation: pick the best samples to show (by some metric), balance uniformly ---
else:
if (sample_method == "curated_variety" or sample_method == "interfered"):
# Generate x times as many samples as we need to then pick the best of
x_, y_used, task_used, varietyVector = previous_generator.sample(
batch_size_replay * curated_multiplier, allowed_classes=allowed_classes, allowed_domains=allowed_domains,
only_x=False, class_probs=None, uniform_sampling=False, varietyVector=True)
# CURATED USING CLASS VARIETY (i.e., generating batch_size_reply*curated_multipler / len(allowed_classes) samples
# per class, where each sample is the "most different" sample based off our variety calculation
elif(sample_method == "curated_classVariety"):
x_, y_used, task_used, varietyVector = previous_generator.sample(
batch_size_replay * curated_multiplier, allowed_classes=allowed_classes, allowed_domains=allowed_domains,
only_x=False, class_probs=None, uniform_sampling=True, varietyVector=True, classVariety=True, classVarietyMask=mask)
elif(sample_method == "curated_softmax"):
with torch.no_grad():
curTaskID = task - 2
newScores_og = previous_model.classify(previous_model.input_to_hidden(x),
not_hidden=False if Generative else True)
newScores = newScores_og[:, :(classes_per_task * (curTaskID + 1))]
softmax = torch.nn.Softmax(dim=1)
scores_old = nn.Softmax(dim=1)(newScores)
avgError = torch.mean(scores_old, dim=0)
sampleProbs = torch.zeros(newScores_og.shape[1])
sampleProbs[:(classes_per_task * (curTaskID + 1))] = avgError[
:(classes_per_task * (curTaskID + 1))]
# Generate x times as many samples as we need to then pick the best of
x_, y_used, task_used = previous_generator.sample(
batch_size_replay * curated_multiplier, allowed_classes=allowed_classes, allowed_domains=allowed_domains,
only_x=False, class_probs=sampleProbs, uniform_sampling=False)
else:
# Generate x times as many samples as we need to then pick the best of
x_, y_used, task_used = previous_generator.sample(
batch_size_replay * curated_multiplier, allowed_classes=allowed_classes, allowed_domains=allowed_domains,
only_x=False, class_probs=None, uniform_sampling=False)
# --- Measure the performance of each of these samples on the current model ---
# Use the previous model to score the generated images (code taken from Trevor's softmax above)
with torch.no_grad():
curTaskID = task - 2
newScores_og = model.classify(x_, not_hidden=False if Generative else True).to(device)
newScores = newScores_og[:, :(classes_per_task * (curTaskID + 1))].to(device) # Logits that don't sum to 1
scores_old = nn.Softmax(dim=1)(newScores).to(device) # Makes the scores sum to 1 (probabilities)
cross_entropy = nn.CrossEntropyLoss(reduction='none').to(device)
y_used = torch.tensor(y_used, dtype=torch.long).to(device)
loss_old = cross_entropy(scores_old, y_used).to(device)
# --- Copy the model and perform an update on just the new incoming data (no replayed data) ---
# This will lead to catastrophic forgetting, as it has no replays to prevent this from happening
model_tmp = copy.deepcopy(model)
# NOTE: Can train multiple batches if needed, but it would be on the same data, so any changes will just be exacerbated
_ = model_tmp.train_a_batch(x, y=y, x_=None, y_=None, scores_=None,
tasks_=task_used, active_classes=active_classes, task=task, rnt=(
1. if task==1 else 1./task
) if rnt is None else rnt, freeze_convE=freeze_convE,
replay_not_hidden=False if Generative else True)
# --- Measure the performance of each of the generated samples on this updated model ---
# This can tell us how much the model 'forgets' each of these samples, we will replay the worst ones
with torch.no_grad():
curTaskID = task - 2
newScores_og = model_tmp.classify(x_, not_hidden=False if Generative else True).to(device)
newScores = newScores_og[:, :(classes_per_task * (curTaskID + 2))].to(device) # Logits that don't sum to 1
scores_new = nn.Softmax(dim=1)(newScores).to(device) # Makes the scores sum to 1 (probabilities)
# --- Measure the difference in cross entropy loss for predictions before and after ---
if sample_method == 'curated' or sample_method == "curated_softmax":
cross_entropy = nn.CrossEntropyLoss(reduction='none') # Per-example cross entropy (not avg)
loss_new = cross_entropy(scores_new, y_used)
# Amount that the loss changes between the model updating
diff = loss_new - loss_old
metric = diff
# TREVOR'S NEW METHOD - This tries to take into account the variety of the samples
elif sample_method == "curated_variety" or sample_method == "curated_classVariety":
cross_entropy = nn.CrossEntropyLoss(reduction='none').to(device) # Per-example cross entropy (not avg)
loss_new = cross_entropy(scores_new, y_used).to(device)
# Amount that the loss changes between the model updating
diff = loss_new - loss_old
# Softmaxing diff and the variety vector (to get probabilities)
variety_weight = torch.tensor((variety_weight)).to(device)
diff_softmax = nn.Softmax(dim=0)(diff).to(device)
variety_softmax = nn.Softmax(dim=0)(varietyVector).to(device)
metric = ((1-variety_weight) * diff_softmax) + (variety_weight * variety_softmax).to(device)
# Multiply the misclassification error (cross entropy) by the amount that this changes between the model updating
# metric = loss_new * diff
# --- Measure KL Divergence between predictions before and predictions afterwards ---
# Maximally Interfered Retrieval uses a linear combination of KL, entropy, and 'variance'
# This ensures the samples are not too close together, but we do not currently measure that
elif sample_method == 'interfered':
# First, pad with zeros so predictions match (previous model predicts zero score for all new classes)
padded_scores = torch.zeros_like(scores_new)
padded_scores[:, :scores_old.size(1)] = scores_old
kl_div = nn.KLDivLoss(reduction='none')(padded_scores, scores_new)
kl_div = torch.mean(kl_div, dim=1)
variety_softmax = nn.Softmax(dim=0)(varietyVector).to(device)
# Calculate MIR loss and balance with variety (instead of explicitly searching, maximize both variety and MIR loss)
mir_loss = kl_div - mir_coef * loss_old
metric = (1-variety_weight) * (mir_loss) + variety_weight * variety_softmax
# --- New idea: use the examples which the new model misclassifies the most as one of the new classes
# This the opposite approach to softmax, where softmax takes the current model and calculates
# Which classes does it confuse the new data for the most, this trains on the new data and then
# Tries to find generated examples which it confuses for the new data classes the most
elif sample_method == 'misclassified' or sample_method == 'uniform_large' or sample_method == 'random_large':
metric = scores_new[:, -1] + scores_new[:, -1]
# --- Sort based on some metric, then divide up by classes (afterwards) ---
_, indices = torch.sort(metric, descending=True) # Descending order, pick first 100
# Shuffle indices around to test choosing from this larger pool of generated samples randomly
if sample_method == 'uniform_large' or sample_method == 'random_large':
indices2 = indices.cpu().numpy()
np.random.shuffle(indices2)
indices = torch.from_numpy(indices2).to(device)
if sample_method != 'random_large' and sample_method != 'curated_softmax':
# --- Calculate how many examples for each class should be generated to divide up uniformly ---
# Uniform dist will be [0, 1, 2, 3, 0, 1, 2] for allowed classes=4 and batch_size_replay=7
uniform_dist = torch.arange(batch_size_replay) % len(allowed_classes)
counts_each_class = torch.unique(uniform_dist, return_counts=True)[1]
# --- Optional: Calculate unbalanced indices to replay, results in poor performance ---
# If we added a variation term to ensure samples are different from each other, this could
# be a simpler way to do things, but variance would be pretty complicated to calculate
#indices_to_replay = indices[:batch_size_replay]
# --- Select the top k_i indices for each class i, where k_i is the number of examples for that class ---
# Top x most affected of the generated samples for each class (ensures it is balanced, slightly more computation than unbalanced)
indices_to_replay = torch.cat(( [ indices[y_used[indices]==i][:counts_each_class[i]] for i in range(len(allowed_classes)) ] ))
x_ = x_[indices_to_replay]
else:
# Uniformly randomly choose from the 400 samples generated
x_ = x_[indices]
#--------------------------------------------OUTPUTS----------------------------------------------------#
if Generative or Current:
# Get target scores & possibly labels (i.e., [scores_] / [y_]) -- use previous model, with no_grad()
if scenario in ("domain", "class") and previous_model.mask_dict is None:
# -if replay does not need to be evaluated for each task (ie, not Task-IL and no task-specific mask)
with torch.no_grad():
all_scores_ = previous_model.classify(x_, not_hidden=False if Generative else True)
scores_ = all_scores_[:, :(classes_per_task*(task-1))] if (
scenario=="class"
) else all_scores_ # -> when scenario=="class", zero probs will be added in [loss_fn_kd]-function
# -also get the 'hard target'
_, y_ = torch.max(scores_, dim=1)
else:
# -[x_] needs to be evaluated according to each previous task, so make list with entry per task
scores_ = list()
y_ = list()
# -if no task-mask and no conditional generator, all scores can be calculated in one go
if previous_model.mask_dict is None and not type(x_)==list:
with torch.no_grad():
all_scores_ = previous_model.classify(x_, not_hidden=False if Generative else True)
for task_id in range(task-1):
# -if there is a task-mask (i.e., XdG is used), obtain predicted scores for each task separately
if previous_model.mask_dict is not None:
previous_model.apply_XdGmask(task=task_id+1)
if previous_model.mask_dict is not None or type(x_)==list:
with torch.no_grad():
all_scores_ = previous_model.classify(x_[task_id] if type(x_)==list else x_,
not_hidden=False if Generative else True)
if scenario=="domain":
# NOTE: if scenario=domain with task-mask, it's of course actually the Task-IL scenario!
# this can be used as trick to run the Task-IL scenario with singlehead output layer
temp_scores_ = all_scores_
else:
temp_scores_ = all_scores_[:, (classes_per_task*task_id):(classes_per_task*(task_id+1))]
scores_.append(temp_scores_)
# - also get hard target
_, temp_y_ = torch.max(temp_scores_, dim=1)
y_.append(temp_y_)
# -only keep predicted y_/scores_ if required (as otherwise unnecessary computations will be done)
y_ = y_ if (model.replay_targets=="hard") else None
scores_ = scores_ if (model.replay_targets=="soft") else None
#-----------------Train model(s)------------------#
#---> Train MAIN MODEL
if batch_index <= iters_main:
# Train the main model with this batch
loss_dict = model.train_a_batch(x, y=y, x_=x_, y_=y_, scores_=scores_,
tasks_=task_used, active_classes=active_classes, task=task, rnt=(
1. if task==1 else 1./task
) if rnt is None else rnt, freeze_convE=freeze_convE,
replay_not_hidden=False if Generative else True)
# UNIFORM SAMPLE CURATION: loss_dict has a "predL_r" key that contains the individual prediction
# losses
# Update running parameter importance estimates in W
if isinstance(model, ContinualLearner) and model.si_c>0:
for n, p in model.convE.named_parameters():
if p.requires_grad:
n = "convE."+n
n = n.replace('.', '__')
if p.grad is not None:
W[n].add_(-p.grad*(p.detach()-p_old[n]))
p_old[n] = p.detach().clone()
for n, p in model.fcE.named_parameters():
if p.requires_grad:
n = "fcE."+n
n = n.replace('.', '__')
if p.grad is not None:
W[n].add_(-p.grad * (p.detach() - p_old[n]))
p_old[n] = p.detach().clone()
for n, p in model.classifier.named_parameters():
if p.requires_grad:
n = "classifier."+n
n = n.replace('.', '__')
if p.grad is not None:
W[n].add_(-p.grad * (p.detach() - p_old[n]))
p_old[n] = p.detach().clone()
# Fire callbacks (for visualization of training-progress / evaluating performance after each task)
for loss_cb in loss_cbs:
if loss_cb is not None:
loss_cb(progress, batch_index, loss_dict, task=task)
for eval_cb in eval_cbs:
if eval_cb is not None:
eval_cb(model, batch_index, task=task)
if model.label=="VAE":
for sample_cb in sample_cbs:
if sample_cb is not None:
sample_cb(model, batch_index, task=task, allowed_classes=None if (
scenario=="domain"
) else list(range(classes_per_task*task)))
#---> Train GENERATOR
if generator is not None and batch_index <= iters_gen:
loss_dict = generator.train_a_batch(x, y=y, x_=x_, y_=y_, scores_=scores_,
tasks_=task_used, active_classes=active_classes, rnt=(
1. if task==1 else 1./task
) if rnt is None else rnt, task=task,
freeze_convE=freeze_convE,
replay_not_hidden=False if Generative else True)
# Fire callbacks on each iteration
for loss_cb in gen_loss_cbs:
if loss_cb is not None:
loss_cb(progress_gen, batch_index, loss_dict, task=task)
for sample_cb in sample_cbs:
if sample_cb is not None:
sample_cb(generator, batch_index, task=task, allowed_classes=None if (
scenario=="domain"
) else list(range(classes_per_task*task)))
# Close progres-bar(s)
progress.close()
if generator is not None:
progress_gen.close()
##----------> UPON FINISHING EACH TASK...
# EWC: estimate Fisher Information matrix (FIM) and update term for quadratic penalty
if isinstance(model, ContinualLearner) and model.ewc_lambda>0:
# -find allowed classes
allowed_classes = list(
range(classes_per_task*(task-1), classes_per_task*task)
) if scenario=="task" else (list(range(classes_per_task*task)) if scenario=="class" else None)
# -if needed, apply correct task-specific mask
if model.mask_dict is not None:
model.apply_XdGmask(task=task)
# -estimate FI-matrix
model.estimate_fisher(train_dataset, allowed_classes=allowed_classes)
# SI: calculate and update the normalized path integral
if isinstance(model, ContinualLearner) and model.si_c>0:
model.update_omega(W, model.epsilon)
# REPLAY: update source for replay
previous_model = copy.deepcopy(model).eval()
if replay_mode=="generative":
Generative = True
previous_generator = previous_model if feedback else copy.deepcopy(generator).eval()
elif replay_mode=='current':
Current = True