-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlifespan.py
219 lines (182 loc) · 9.63 KB
/
lifespan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import os
import glob
import warnings
import json
__version__ = "0.1.0"
from utils import fix_epi_runs, generate_intended_for, move_to_bids, spin_echo_intended_for
def create_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--output_dir", type=str, required=True,
help="path to output BIDS directory.")
parser.add_argument("--dry_run", action="store_true", help="do not write files, just print what would be done.")
parser.add_argument("--overwrite", action="store_true", help="overwrite existing files.")
parser.add_argument("--method", type=str, default="hardlink", choices=["hardlink", "symlink", "copy", "move"],
help="method to use for linking files. (default: hardlink). "
"JSON sidecars will always be copied as these are edited to comply with BIDS formatting.")
parser.add_argument("--use_bids_uris", action="store_true",
help="use BIDS URIs for setting the IntendedFor field for single bad reference and spin echo "
"images. This is now required by BIDS, but I am not making it the default because fMRIprep"
" does not support it yet. "
"(https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#using-intendedfor-metadata)")
return parser
def parse_args():
parser = create_parser()
parser.add_argument("--nda_dir", type=str, required=True,
help="path to nda directory containing the unprocessed imagingcollection for the"
"HCP Aging or HCP Development datasets.")
parser.add_argument("--name", type=str, default="auto",
help="name of the dataset. (default: 'auto'). 'auto' will try to determine if the dataset is "
"the HCP Aging or HCP Development dataset based on the contents of the nda_dir.")
# TODO: add option to use the Siemens bias field corrected images instead of the raw images
return parser.parse_args()
def write_bids_dataset_metadata_files(bids_dir, name):
# write dataset_description.json
dataset_description = {"Name": name, "BIDSVersion": "1.8.0", "DatasetType": "raw",
"GeneratedBy": [{"Name": "HCPLifespanBIDS", "Version": __version__,
"CodeURL": "https://github.com/ellisdg/HCPLifespan2BIDS"}]}
with open(os.path.join(bids_dir, "dataset_description.json"), "w") as f:
json.dump(dataset_description, f, indent=4, sort_keys=False)
# write README
with open(os.path.join(bids_dir, "README"), "w") as f:
f.write("This is a BIDS dataset generated from the HCP Lifespan datasets using HCPLifespan2BIDS.\n")
# write bidsignore
with open(os.path.join(bids_dir, ".bidsignore"), "w") as f:
f.write("*.mp4\n")
# TODO: convert physio files to tsv and make sure the correct columns are present
f.write("*_physio.csv\n")
# TODO: fix metadata for ASL files so that it conforms to BIDS standard
f.write("perf/\n")
def get_dataset_name(name, subject_id):
if name == "auto":
if "HCD" in subject_id:
name = "HCPDevelopment"
elif "HCA" in subject_id:
name = "HCPAging"
else:
warnings.warn("Could not detect name of HCP project from subject_id: {}.\n"
"Setting dataset name to 'HCPUnknown'.".format(subject_id))
name = "HCPUnknown"
return name
def parse_phase_encoding_direction(image_file, dirs=("AP", "PA")):
for dir in dirs:
if f"_{dir}" in os.path.basename(image_file):
return dir
return None
def set_phase_encoding_direction(kwargs, image_file, dirs=("AP", "PA")):
pe_dir = parse_phase_encoding_direction(image_file, dirs=dirs)
if pe_dir is not None:
kwargs["dir"] = pe_dir
def find_gradient_unwarped_file(image_file):
gradunwarp_file = image_file.replace("unprocessed/3T", "gradunwarp")
if not os.path.exists(gradunwarp_file):
raise ValueError(f"Gradient unwarped file not found: {gradunwarp_file}")
return gradunwarp_file
def run(wildcard, use_bids_uris=False, pe_dirs=("AP", "PA"), output_dir=".", method="hardlink", overwrite=False,
dry_run=False, name="auto", grad_unwarp=False, skip_bias=True, t1w_use_derived=False, t2w_use_derived=False,
skip=(), use_precompiled_sidecars=False, sort_by_run_name=False):
print("Searching for subjects with wildcard: {}".format(wildcard))
subject_folders = sorted(glob.glob(wildcard))
print("Found {} subjects.".format(len(subject_folders)))
for subject_folder in subject_folders:
print("Processing subject: {}".format(subject_folder))
subject_id = os.path.basename(subject_folder).split("_")[0]
image_files = glob.glob(os.path.join(subject_folder, "unprocessed/**/*.nii.gz"), recursive=True)
print("Found {} image files.".format(len(image_files)))
for image_file in image_files:
# keep track of the original image file
orig_image_file = image_file
if os.path.dirname(image_file).endswith("OTHER_FILES"):
continue
if skip_bias and "BIAS" in image_file:
continue
if any([skip_str in image_file for skip_str in skip]):
continue
print("Processing image file: {}".format(image_file))
kwargs = dict()
intended_for = None
set_phase_encoding_direction(kwargs, image_file, dirs=pe_dirs)
if "SpinEchoFieldMap" in image_file:
bids_modality = "epi"
folder = "fmap"
basename = os.path.basename(os.path.dirname(image_file))
run = basename.lower()
if "_" in run:
run = "".join(run.split("_")[1:]).lower()
# match = re.search(r"SpinEchoFieldMap(\d+)", image_file)
# if match:
# run = run + match.group(1)
kwargs["run"] = run
intended_for = spin_echo_intended_for(subject_id, use_bids_uris, basename, image_file)
elif "T1w" in image_file:
folder = "anat"
bids_modality = "T1w"
if t1w_use_derived:
image_file = os.path.join(image_file.split("unprocessed")[0], "T1w", "T1w_acpc_dc.nii.gz")
if not os.path.exists(image_file):
raise ValueError(f"Derived T1w file not found: {image_file}")
elif "T2w" in image_file:
folder = "anat"
bids_modality = "T2w"
if t2w_use_derived:
image_file = os.path.join(image_file.split("unprocessed")[0], "T1w", "T2w_acpc_dc.nii.gz")
if not os.path.exists(image_file):
raise ValueError(f"Derived T2w file not found: {image_file}")
elif "fMRI" in image_file:
if grad_unwarp:
image_file = find_gradient_unwarped_file(image_file)
folder = "func"
bids_modality = "bold"
task = os.path.basename(os.path.dirname(image_file))
if "_" in task:
task = task.split("_")[1].lower()
if "rest" in task:
run = task.split("rest")[1]
task = "rest"
kwargs["run"] = run
kwargs["task"] = task
elif "Diffusion" in image_file:
folder = "dwi"
bids_modality = "dwi"
# dir 98 scans are acquired before dir99 scans
if "dir98" in image_file:
kwargs["run"] = "1"
elif "dir99" in image_file:
kwargs["run"] = "2"
elif "PCASL" in image_file:
bids_modality = "asl"
folder = "perf"
elif "HiResHp" in image_file:
bids_modality = "T2w"
folder = "anat"
kwargs["acq"] = "highres"
else:
folder = None
bids_modality = None
print("Unknown modality: {}".format(image_file))
if "SBRef" in image_file:
intended_for = generate_intended_for(subject_id=subject_id, modality=bids_modality, folder=folder,
bids_uris=use_bids_uris, **kwargs)
# overwrite the modality to be sbref
bids_modality = "sbref"
move_to_bids(image_file=image_file, bids_dir=output_dir, subject_id=subject_id, folder=folder,
orig_image_file=orig_image_file, modality=bids_modality, method=method, overwrite=overwrite,
dryrun=dry_run, intended_for=intended_for, use_precompiled_sidecars=use_precompiled_sidecars,
**kwargs)
first_subject_id = os.path.basename(subject_folders[0]).split("_")[0]
write_bids_dataset_metadata_files(output_dir, name=get_dataset_name(name, first_subject_id))
if not dry_run:
fix_epi_runs(output_dir, pe_dirs=pe_dirs, sort_by_run_name=sort_by_run_name)
def main():
args = parse_args()
wildcard = os.path.join(args.nda_dir, "imagingcollection01/HC*")
run(wildcard,
use_bids_uris=args.use_bids_uris,
pe_dirs=("AP", "PA"),
output_dir=args.output_dir,
method=args.method,
overwrite=args.overwrite,
dry_run=args.dry_run,
name=args.name)
if __name__ == "__main__":
main()