-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
236 lines (203 loc) · 9.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (C) 2019 Elvis Yu-Jing Lin <[email protected]>
#
# This work is licensed under the MIT License. To view a copy of this license,
# visit https://opensource.org/licenses/MIT.
"""Train a SaGAN"""
import argparse
import datetime
import itertools
import json
import os
from os.path import join
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision.utils as vutils
from torchsummary import summary
from tensorboardX import SummaryWriter
from data import CelebA
from sagan import Generator, Discriminator
# Default CelebA 40 attributes
celeba_attrs = [
'5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald',
'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair',
'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair',
'Heaay_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache',
'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline',
'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings',
'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'
]
def loop(iterator):
while True:
for item in iterator:
yield item
def trainable(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def add_scalar_dict(writer, scalar_dict, iteration, directory=None):
for key in scalar_dict:
key_ = directory + '/' + key if directory is not None else key
writer.add_scalar(key_, scalar_dict[key], iteration)
def init_weights(m):
if type(m) is nn.Linear:
nn.init.normal_(m.weight, mean=0.0, std=0.02)
m.bias.data.fill_(0.0)
elif type(m) is nn.Conv2d:
nn.init.normal_(m.weight, mean=0.0, std=0.02)
m.bias.data.fill_(0.0)
elif type(m) is nn.ConvTranspose2d:
nn.init.normal_(m.weight, mean=0.0, std=0.02)
m.bias.data.fill_(0.0)
def parse():
parser = argparse.ArgumentParser()
parser.add_argument('--data-path', type=str, default='./data/celeba')
parser.add_argument('--attr-path', type=str, default='./data/list_attr_celeba.txt')
parser.add_argument('--target-attr', type=str, choices=celeba_attrs, required=True)
parser.add_argument('--image-size', type=int, default=128)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--lr', type=float, default=0.0002)
parser.add_argument('--beta1', type=float, default=0.5)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--l1', type=float, default=20)
parser.add_argument('--l2', type=float, default=100)
parser.add_argument('--lgp', type=float, default=10)
parser.add_argument('--d-iters', type=int, default=3)
parser.add_argument('--total-kimg', type=int, default=1000)
parser.add_argument('--tick-kimg', type=float, default=5.0)
parser.add_argument('--sample-ticks', type=int, default=1)
parser.add_argument('--save-ticks', type=int, default=10)
parser.add_argument('--num-samples', type=int, default=64)
parser.add_argument('--experiment-name', type=str, default=datetime.datetime.now().strftime("%Y-%m-%dM%H:%M.%f"))
parser.add_argument('--gpu', action='store_true')
return parser.parse_args()
if __name__ == '__main__':
# Arguments
args = parse()
print(args)
# Device
device = torch.device('cuda') if args.gpu and torch.cuda.is_available() else torch.device('cpu')
# Paths
checkpoint_path = join('results', args.experiment_name, 'checkpoint')
sample_path = join('results', args.experiment_name, 'sample')
summary_path = join('results', args.experiment_name, 'summary')
os.makedirs(checkpoint_path, exist_ok=True)
os.makedirs(sample_path, exist_ok=True)
os.makedirs(summary_path, exist_ok=True)
with open(join('results', args.experiment_name, 'setting.json'), 'w', encoding='utf-8') as f:
json.dump(vars(args), f, indent=2, sort_keys=True)
writer = SummaryWriter(summary_path)
# Data
selected_attrs = [args.target_attr]
train_dset = CelebA(args.data_path, args.attr_path, args.image_size, 'train', selected_attrs)
train_data = data.DataLoader(train_dset, args.batch_size, shuffle=True, drop_last=True)
train_data = loop(train_data)
test_dset = CelebA(args.data_path, args.attr_path, args.image_size, 'test', selected_attrs)
test_data = data.DataLoader(test_dset, args.num_samples)
for fixed_reals, fixed_labels in test_data:
# Get the first batch of images from the testing set
fixed_reals, fixed_labels = fixed_reals.to(device), fixed_labels.type_as(fixed_reals).to(device)
fixed_target_labels = 1 - fixed_labels
break
del test_dset
del test_data
vutils.save_image(fixed_reals, join(sample_path, '{:07d}_real.jpg'.format(0)), nrow=8, padding=0, normalize=True, range=(-1., 1.))
# Models
G = Generator()
G.apply(init_weights)
G.to(device)
D = Discriminator()
D.apply(init_weights)
D.to(device)
# Optimizers
G_opt = optim.Adam(G.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
D_opt = optim.Adam(D.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
cross_entropy = torch.nn.BCELoss()
l1_norm = torch.nn.L1Loss()
cur_nimg = 0
cur_tick = 0
tick_start_nimg = cur_nimg
while cur_nimg < args.total_kimg * 1000:
G.train()
D.train()
for _ in range(args.d_iters):
# Train D
trainable(G, False)
trainable(D, True)
reals, labels = next(train_data)
reals, labels = reals.to(device), labels.type_as(reals).to(device)
target_labels = 1 - labels
fakes, _ = G(reals, target_labels)
fakes = fakes.detach()
d_real, dc_real = D(reals)
d_fake, dc_fake = D(fakes)
df_loss = d_fake.mean() - d_real.mean()
dc_loss = cross_entropy(dc_real, labels)
alpha = torch.rand(args.batch_size, 1, 1, 1).to(device)
mix_in = (1-alpha) * reals + alpha * fakes
mix_in.requires_grad = True
mix_out, _ = D(mix_in)
grad = torch.autograd.grad(
outputs=mix_out, inputs=mix_in,
grad_outputs=torch.ones_like(mix_out),
create_graph=True, retain_graph=True, only_inputs=True
)[0]
grad = grad.view(grad.size(0), -1)
norm = grad.norm(2, dim=1)
df_gp = ((norm - 1.0) ** 2).mean()
d_loss = df_loss + dc_loss + args.lgp * df_gp
D_opt.zero_grad()
d_loss.backward()
D_opt.step()
cur_nimg += args.batch_size
# Train G
trainable(G, True)
trainable(D, False)
reals, labels = next(train_data)
reals, labels = reals.to(device), labels.type_as(reals).to(device)
target_labels = 1 - labels
fakes, _ = G(reals, target_labels)
fakes_crec, _ = G(fakes, labels)
fakes_srec, _ = G(reals, labels)
d_fake, dc_fake = D(fakes)
gf_loss = -d_fake.mean()
gc_loss = cross_entropy(dc_fake, target_labels)
gr_loss = args.l1 * l1_norm(fakes_crec, reals) + args.l2 * l1_norm(fakes_srec, reals)
g_loss = gf_loss + gc_loss + gr_loss
G_opt.zero_grad()
g_loss.backward()
G_opt.step()
done = (cur_nimg >= args.total_kimg * 1000)
if cur_nimg >= tick_start_nimg + args.tick_kimg * 1000 or done:
cur_tick += 1
tick_start_nimg = cur_nimg
# Training log
print('kimg {:.1f} | d_loss {:.6f} g_loss {:.6f} | df {:.6f} dc {:.6f} gp {:.6f} gf {:.6f} gc {:.6f} gr {:.6f}'.format(cur_nimg / 1000, d_loss.item(), g_loss.item(), df_loss.item(), dc_loss.item(), df_gp.item(), gf_loss.item(), gc_loss.item(), gr_loss.item()))
add_scalar_dict(writer, {
'kimg': cur_nimg / 1000
}, cur_nimg, 'Progress')
add_scalar_dict(writer, {
'd_loss': d_loss.item(),
'df_loss': df_loss.item(),
'dc_loss': dc_loss.item(),
'df_gp': df_gp.item()
}, cur_nimg, 'D')
add_scalar_dict(writer, {
'g_loss': g_loss.item(),
'gf_loss': gf_loss.item(),
'gc_loss': gc_loss.item(),
'gr_loss': gr_loss.item()
}, cur_nimg, 'G')
# Training samples
if cur_tick % args.sample_ticks == 0 or done:
G.eval()
with torch.no_grad():
samples, masks = G(fixed_reals, fixed_target_labels)
vutils.save_image(samples, join(sample_path, '{:07d}_fake.jpg'.format(cur_nimg)), nrow=8, padding=0, normalize=True, range=(-1., 1.))
vutils.save_image(masks.repeat(1, 3, 1, 1), join(sample_path, '{:07d}_mask.jpg'.format(cur_nimg)), nrow=8, padding=0)
# Model checkpoints
if cur_tick % args.save_ticks == 0 or done:
torch.save(G.state_dict(), join(checkpoint_path, '{:07}.G.pth'.format(cur_nimg)))
torch.save(D.state_dict(), join(checkpoint_path, '{:07}.D.pth'.format(cur_nimg)))
torch.save(G_opt.state_dict(), join(checkpoint_path, '{:07}.G_opt.pth'.format(cur_nimg)))
torch.save(D_opt.state_dict(), join(checkpoint_path, '{:07}.D_opt.pth'.format(cur_nimg)))