-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
265 lines (240 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright (C) 2019 Elvis Yu-Jing Lin <[email protected]>
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Main entry point to train a model"""
import argparse
import datetime
import itertools
import json
import os
from os.path import join
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision.utils as vutils
from tensorboardX import SummaryWriter
from torchsummary import summary
from networks import Encoder, Generator, Discriminator, VGG, sample_latent
from utils import onehot2d
# The synchronized batch normalization is from
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch.git
# from sync_batchnorm import convert_model
def set_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def trainable(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def add_scalar_dict(writer, scalar_dict, iteration, directory=None):
for key in scalar_dict:
key_ = directory + '/' + key if directory is not None else key
writer.add_scalar(key_, scalar_dict[key], iteration)
def init_weights(m):
if type(m) is nn.Linear:
nn.init.xavier_normal_(m.weight)
m.bias.data.fill_(0.0)
elif type(m) is nn.Conv2d:
nn.init.xavier_normal_(m.weight)
m.bias.data.fill_(0.0)
def parse():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='./data/COCO-Stuff')
# '/share/data/COCO-Stuff'
parser.add_argument('--dataset', type=str, choices=['COCO-Stuff'], default='COCO-Stuff')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--lambda_fm', type=float, default=10.0)
parser.add_argument('--lambda_kl', type=float, default=0.05)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--epochs_decay', type=int, default=100)
parser.add_argument('--lr_G', type=float, default=0.0001)
parser.add_argument('--lr_D', type=float, default=0.0004)
parser.add_argument('--beta1', type=float, default=0.0)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--log_iters', type=int, default=100)
parser.add_argument('--num_samples', type=int, default=16)
parser.add_argument('--sample_epochs', type=int, default=1)
parser.add_argument('--save_epochs', type=int, default=10)
parser.add_argument('--experiment_name', type=str, default=datetime.datetime.now().strftime("%Y-%m-%dM%H:%M.%f"))
parser.add_argument('--gpu', action='store_true')
parser.add_argument('--multi_gpu', action='store_true')
parser.add_argument('--load_epoch', type=int, default=None)
parser.add_argument('--load_from_experiment', type=str, default=None)
return parser.parse_args()
if __name__ == '__main__':
# Arguments
args = parse()
print(args)
# Device
device = torch.device('cuda') if args.gpu and torch.cuda.is_available() else torch.device('cpu')
if args.multi_gpu: assert device.type == 'cuda'
# Paths
checkpoint_path = join('results', args.experiment_name, 'checkpoint')
sample_path = join('results', args.experiment_name, 'sample')
summary_path = join('results', args.experiment_name, 'summary')
os.makedirs(checkpoint_path, exist_ok=True)
os.makedirs(sample_path, exist_ok=True)
os.makedirs(summary_path, exist_ok=True)
with open(join('results', args.experiment_name, 'setting.json'), 'w', encoding='utf-8') as f:
json.dump(vars(args), f, indent=2, sort_keys=True)
writer = SummaryWriter(summary_path)
# Data
if args.dataset == 'COCO-Stuff':
from data import COCO_Stuff
train_dset = COCO_Stuff(args.data, mode='train')
val_dset = COCO_Stuff(args.data, mode='val')
n_classes = COCO_Stuff.n_classes
train_data = data.DataLoader(train_dset, batch_size = args.batch_size, shuffle=True, drop_last=True)
val_data = data.DataLoader(val_dset, batch_size = args.num_samples, shuffle=False, drop_last=False)
fixed_reals, fixed_annos = next(iter(val_data))
fixed_reals, fixed_annos = fixed_reals.to(device), fixed_annos.to(device)
fixed_annos_onehot = onehot2d(fixed_annos, n_classes).type_as(fixed_reals)
del val_dset
del val_data
vutils.save_image(fixed_reals, join(sample_path, '{:03d}_real.jpg'.format(0)), nrow=4, padding=0, normalize=True, range=(-1., 1.))
vutils.save_image(fixed_annos.float()/n_classes, join(sample_path, '{:03d}_anno.jpg'.format(0)), nrow=4, padding=0)
# Models
E = Encoder().to(device)
E.apply(init_weights)
# summary(E, (3, 256, 256), device=device)
G = Generator(n_classes).to(device)
G.apply(init_weights)
# summary(G, [(256,), (10, 256, 256)], device=device)
D = Discriminator(n_classes).to(device)
D.apply(init_weights)
# summary(D, (13, 256, 256), device=device)
vgg = VGG().to(device)
if args.multi_gpu:
E = nn.DataParallel(E)
G = nn.DataParallel(G)
# G = convert_model(G)
D = nn.DataParallel(D)
VGG = nn.DataParallel(VGG)
# Optimizers
G_opt = optim.Adam(itertools.chain(G.parameters(), E.parameters()), lr=args.lr_G, betas=(args.beta1, args.beta2))
D_opt = optim.Adam(D.parameters(), lr=args.lr_D, betas=(args.beta1, args.beta2))
# Load weights from a specific epoch
start_ep = 0
if args.load_epoch is not None:
if args.load_from_experiment is None:
load_checkpoint_path = checkpoint_path
else:
load_checkpoint_path = join('results', args.load_from_experiment, 'checkpoint')
load_ep = args.load_epoch
start_ep = load_ep + 1
E.load_state_dict(torch.load(join(load_checkpoint_path, '{:03}.E.pth'.format(load_ep))))
G.load_state_dict(torch.load(join(load_checkpoint_path, '{:03}.G.pth'.format(load_ep))))
D.load_state_dict(torch.load(join(load_checkpoint_path, '{:03}.D.pth'.format(load_ep))))
G_opt.load_state_dict(torch.load(join(load_checkpoint_path, '{:03}.G_opt.pth'.format(load_ep))))
D_opt.load_state_dict(torch.load(join(load_checkpoint_path, '{:03}.D_opt.pth'.format(load_ep))))
# Criterion
l1_norm = nn.L1Loss()
it = 0
decayed_lr_G = args.lr_G
decayed_lr_D = args.lr_D
total_epochs = args.epochs + args.epochs_decay
for ep in range(start_ep, total_epochs):
# Linearly decay learning rates
if ep >= args.epochs:
decayed_lr_G = args.lr_G / args.epochs_decay * (total_epochs - ep)
decayed_lr_D = args.lr_D / args.epochs_decay * (total_epochs - ep)
set_lr(G_opt, decayed_lr_G)
set_lr(D_opt, decayed_lr_D)
# Optimize parameters
E.train()
G.train()
D.train()
for reals, annos in tqdm(train_data):
reals, annos = reals.to(device), annos.to(device)
annos_onehot = onehot2d(annos, n_classes).type_as(reals)
# Train D
trainable(E, False)
trainable(G, False)
trainable(D, True)
mu, logvar = E(reals)
latents = sample_latent(mu, logvar).detach()
fakes = G(latents, annos_onehot).detach()
d_real = D(reals, annos_onehot)
d_fake = D(fakes, annos_onehot)
# Real/fake hinge loss
df_loss = torch.nn.ReLU()(1.0 - d_real[-1]).mean() + torch.nn.ReLU()(1.0 + d_fake[-1]).mean()
# D loss
d_loss = df_loss
# Update D
D_opt.zero_grad()
d_loss.backward()
D_opt.step()
# Train G
trainable(E, True)
trainable(G, True)
trainable(D, False)
mu, logvar = E(reals)
latents = sample_latent(mu, logvar)
fakes = G(latents, annos_onehot)
d_fake = D(fakes, annos_onehot)
# Real/fake hinge loss
gf_loss = -d_fake[-1].mean()
# Feature matching loss
fm_loss = 0
for d_f, d_r in zip(d_fake[:-1], d_real[:-1]):
fm_loss += l1_norm(d_f, d_r.detach())
# Perceptual loss
vgg_loss = 0
for w, f, r in zip(vgg.weights, vgg(fakes), vgg(reals)):
vgg_loss += w * l1_norm(f, r.detach())
# KL divergence loss
kl_loss = 0.5 * torch.sum(torch.exp(logvar) + mu**2 - 1. - logvar)
# G loss
g_loss = gf_loss + args.lambda_fm * (fm_loss + vgg_loss) + args.lambda_kl * kl_loss
# Update G
G_opt.zero_grad()
g_loss.backward()
G_opt.step()
if (it+1) % args.log_iters == 0:
print('iter {:d} epoch {:d} d_loss {:.4f} g_loss {:.4f} gf {:.4f} fm {:.4f} vgg_loss {:.4f} kl {:.4f}'.format(
it, ep, d_loss.item(), g_loss.item(), gf_loss.item(), fm_loss.item(),
vgg_loss.item() if type(vgg_loss) is torch.Tensor else vgg_loss, kl_loss.item()
))
add_scalar_dict(writer, {
'd_loss': d_loss.item(),
'df_loss': df_loss.item()
}, it, 'D')
add_scalar_dict(writer, {
'g_loss': g_loss.item(),
'gf_loss': gf_loss.item(),
'fm_loss': fm_loss.item(),
'vgg_loss': vgg_loss.item() if type(vgg_loss) is torch.Tensor else vgg_loss,
'kl_loss': kl_loss.item()
}, it, 'G')
add_scalar_dict(writer, {
'lr_G': decayed_lr_G,
'lr_D': decayed_lr_D
}, it, 'LR')
E.eval()
G.eval()
with torch.no_grad():
mu, logvar = E(fixed_reals)
latents = sample_latent(mu, logvar)
samples = G(latents, fixed_annos_onehot)
vutils.save_image(samples, join(sample_path, '{:03d}_{:07d}_fake.jpg'.format(ep, it)), nrow=4, padding=0, normalize=True, range=(-1., 1.))
it += 1
# Sample images
if (ep+1) % args.sample_epochs == 0:
E.eval()
G.eval()
with torch.no_grad():
mu, logvar = E(fixed_reals)
latents = sample_latent(mu, logvar)
samples = G(latents, fixed_annos_onehot)
vutils.save_image(samples, join(sample_path, '{:03d}_fake.jpg'.format(ep)), nrow=4, padding=0, normalize=True, range=(-1., 1.))
# Checkpoints
if (ep+1) % args.save_epochs == 0:
torch.save(E.state_dict(), join(checkpoint_path, '{:03}.E.pth'.format(ep)))
torch.save(G.state_dict(), join(checkpoint_path, '{:03}.G.pth'.format(ep)))
torch.save(D.state_dict(), join(checkpoint_path, '{:03}.D.pth'.format(ep)))
torch.save(G_opt.state_dict(), join(checkpoint_path, '{:03}.G_opt.pth'.format(ep)))
torch.save(D_opt.state_dict(), join(checkpoint_path, '{:03}.D_opt.pth'.format(ep)))