-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0053.go
63 lines (57 loc) · 1.43 KB
/
0053.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// Source: https://leetcode.com/problems/maximum-subarray
// Title: Maximum Subarray
// Difficulty: Easy
// Author: Mu Yang <http://muyang.pro>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
//
// Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
//
// Example 1:
//
// Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
// Output: 6
// Explanation: [4,-1,2,1] has the largest sum = 6.
//
// Example 2:
//
// Input: nums = [1]
// Output: 1
//
// Example 3:
//
// Input: nums = [0]
// Output: 0
//
// Example 4:
//
// Input: nums = [-1]
// Output: -1
//
// Example 5:
//
// Input: nums = [-2147483647]
// Output: -2147483647
//
// Constraints:
//
// 1 <= nums.length <= 2 * 10^4
// -2^31 <= nums[i] <= 2^31-1
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package main
func maxSubArray(nums []int) int {
maxGlobal := nums[0]
maxEndHere := nums[0]
for _, num := range nums[1:] {
maxEndHere = _max(maxEndHere+num, num)
maxGlobal = _max(maxGlobal, maxEndHere)
}
return maxGlobal
}
func _max(a, b int) int {
if a > b {
return a
}
return b
}