-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0070.py
66 lines (56 loc) · 1.79 KB
/
0070.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Source: https://leetcode.com/problems/climbing-stairs
# Title: Climbing Stairs
# Difficulty: Easy
# Author: Mu Yang <http://muyang.pro>
################################################################################################################################
# You are climbing a stair case. It takes n steps to reach to the top.
#
# Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
#
# Example 1:
#
# Input: 2
# Output: 2
# Explanation: There are two ways to climb to the top.
# 1. 1 step + 1 step
# 2. 2 steps
#
# Example 2:
#
# Input: 3
# Output: 3
# Explanation: There are three ways to climb to the top.
# 1. 1 step + 1 step + 1 step
# 2. 1 step + 2 steps
# 3. 2 steps + 1 step
#
# Constraints:
#
# 1 <= n <= 45
#
################################################################################################################################
from math import sqrt, pow
SQRT5 = sqrt(5.0)
PHI = (1+SQRT5)/2
class Solution:
"""Find (n+1)th Fibonacci number"""
def climbStairs(self, n: int) -> int:
return int(pow(PHI, n+1)/SQRT5+.5)
################################################################################################################################
class Solution2:
"""Find (n+1)th Fibonacci number"""
def climbStairs(self, n: int) -> int:
a = b = 1
for i in range(n-1):
a, b = a+b, a
return a
################################################################################################################################
# Python 3.8+
# from math import comb
class Solution3:
def climbStairs(self, n: int) -> int:
ans = 0
for n2 in range(n//2+1): # num(2)
m = n - n2 # num(1) + num(2)
ans += comb(m, n2)
return ans