-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0160.go
218 lines (192 loc) · 7.26 KB
/
0160.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// Source: https://leetcode.com/problems/intersection-of-two-linked-lists
// Title: Intersection of Two Linked Lists
// Difficulty: Easy
// Author: Mu Yang <http://muyang.pro>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Given the heads of two singly linked-lists headA and headB, return the node at which the two lists intersect. If the two linked lists have no intersection at all, return null.
//
// For example, the following two linked lists begin to intersect at node c1:
//
// https://assets.leetcode.com/uploads/2021/03/05/160_statement.png
//
// The test cases are generated such that there are no cycles anywhere in the entire linked structure.
//
// Note that the linked lists must retain their original structure after the function returns.
//
// Custom Judge:
//
// The inputs to the judge are given as follows (your program is not given these inputs):
//
// intersectVal - The value of the node where the intersection occurs. This is 0 if there is no intersected node.
// listA - The first linked list.
// listB - The second linked list.
// skipA - The number of nodes to skip ahead in listA (starting from the head) to get to the intersected node.
// skipB - The number of nodes to skip ahead in listB (starting from the head) to get to the intersected node.
//
// The judge will then create the linked structure based on these inputs and pass the two heads, headA and headB to your program. If you correctly return the intersected node, then your solution will be accepted.
//
// Example 1:
//
// Input: intersectVal = 8, listA = [4,1,8,4,5], listB = [5,6,1,8,4,5], skipA = 2, skipB = 3
// Output: Intersected at '8'
// Explanation:
// The intersected node's value is 8 (note that this must not be 0 if the two lists intersect).
// From the head of A, it reads as [4,1,8,4,5]. From the head of B, it reads as [5,6,1,8,4,5]. There are 2 nodes before the intersected node in A; There are 3 nodes before the intersected node in B.
//
// Example 2:
//
// Input: intersectVal = 2, listA = [1,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
// Output: Intersected at '2'
// Explanation:
// The intersected node's value is 2 (note that this must not be 0 if the two lists intersect).
// From the head of A, it reads as [1,9,1,2,4]. From the head of B, it reads as [3,2,4]. There are 3 nodes before the intersected node in A; There are 1 node before the intersected node in B.
//
// Example 3:
//
// Input: intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
// Output: No intersection
// Explanation:
// From the head of A, it reads as [2,6,4]. From the head of B, it reads as [1,5]. Since the two lists do not intersect, intersectVal must be 0, while skipA and skipB can be arbitrary values.
// The two lists do not intersect, so return null.
//
// Constraints:
//
// The number of nodes of listA is in the m.
// The number of nodes of listB is in the n.
// 1 <= m, n <= 3 * 10^4
// 1 <= Node.val <= 10^5
// 0 <= skipA < m
// 0 <= skipB < n
// intersectVal is 0 if listA and listB do not intersect.
// intersectVal == listA[skipA] == listB[skipB] if listA and listB intersect.
//
// Follow up: Could you write a solution that runs in O(m + n) time and use only O(1) memory?
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package main
import "unsafe"
type ListNode struct {
Val int
Next *ListNode
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Let lenA, lenB be the length of two lists.
// Assume that lenA >= lenB
// Let runner A run (lenA-lenB) first, then run both runner together until visit the same node.
func getIntersectionNode(headA, headB *ListNode) *ListNode {
runnerA := headA
runnerB := headB
lenA := _lenLinkList(runnerA)
lenB := _lenLinkList(runnerB)
if lenA < lenB { // assume lenA >= lenB
runnerA, runnerB = runnerB, runnerA
lenA, lenB = lenB, lenA
}
// Run A first
for i := 0; i < lenA-lenB; i++ {
runnerA = runnerA.Next
}
// Run A and B together
for runnerA != runnerB {
runnerA = runnerA.Next
runnerB = runnerB.Next
}
return runnerA
}
func _lenLinkList(head *ListNode) int {
step := 0
for head != nil {
head = head.Next
step++
}
return step
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Use two runner A & B starting from each head.
// For each runner, go to another head if it reaches the end.
// Stop the algorithm when both runner reach the same node.
// Runner A will run lenA + skipB = skipA + lenC + skipB steps to reach the intersection twice
// Runner B will run lenB + skipA = skipB + lenC + skipA steps to reach the intersection twice
// Note that both runner takes the same steps.
//
// If there is intersection:
//
// If skipA == skipB, then the runners will stop at the the first traversal (reaches the intersection)
// If skipA != skipB, then the runners will stop at the the second traversal (reaches the intersection)
//
// If there is NO intersection
//
// If lenA == lenB, then the runners will stop at the the first traversal (reaches nil)
// If lenA != lenB, then the runners will stop at the the second traversal (reaches nil)
func getIntersectionNode2(headA, headB *ListNode) *ListNode {
runnerA := headA
runnerB := headB
for runnerA != runnerB {
if runnerA == nil { // goto head B if reaches the end
runnerA = headB
} else {
runnerA = runnerA.Next
}
if runnerB == nil { // goto head A if reaches the end
runnerB = headA
} else {
runnerB = runnerB.Next
}
}
return runnerA
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Use two runner P & Q starting from the heads A & B.
//
// (P) a1 -> a2 -> X -> c1 -> c2
//
// (Q) b1 -> b2 -> b3 ->
// First, run P and revert the links as you go:
//
// a1 <- a2 <- X <- c1 <- c2 (P)
//
// (Q) b1 -> b2 -> b3 ->
// Next, reverse by Q:
//
// (Q) a1 -> a2 -> X <- c1 <- c2 (P)
// b1 <- b2 <- b3 <-
//
// Finally, reverse by P again:
//
// (Q) a1 -> a2 -> X -> c1 -> c2
//
// (P) b1 -> b2 -> b3 ->
// Note that P & Q are swapped
//
// In the process, all nodes has been visited exactly twice, while X has been visited three times.
// We may use XOR trick the get the node X.
//
// If there is no X (no intersection), then P will go back to A.
// Therefore we need to reverse Q again to recover the structure.
func getIntersectionNode3(headA, headB *ListNode) *ListNode {
if headA == headB { // Eage case
return headA
}
runnerP := headA
runnerQ := headB
acc := uintptr(unsafe.Pointer(nil))
runnerP = _reverseLinkList(runnerP, &acc)
runnerQ = _reverseLinkList(runnerQ, &acc)
runnerP = _reverseLinkList(runnerP, &acc)
if runnerP == headA {
runnerQ = _reverseLinkList(runnerQ, &acc)
return nil
}
return (*ListNode)(unsafe.Pointer(acc))
}
func _reverseLinkList(head *ListNode, acc *uintptr) *ListNode {
var (
prevNode *ListNode = nil
currNode *ListNode = head
)
for currNode != nil {
*acc ^= uintptr(unsafe.Pointer(currNode))
prevNode, currNode, currNode.Next = currNode, currNode.Next, prevNode
}
return prevNode
}