-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoonwatch_utils.py
539 lines (446 loc) · 20 KB
/
moonwatch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
'''
Functions used for Moonwatch Slack app
(Does not include functions for using Twitter API)
'''
import os
import json
import time as t
import requests
import pandas as pd
import gspread
import gspread_dataframe as gd
from base64 import b64encode
from datetime import date, datetime, timedelta, time
from gspread_dataframe import set_with_dataframe
from PIL import Image
from selenium import webdriver
from selenium.common.exceptions import NoSuchElementException, WebDriverException
from selenium.webdriver.chrome.options import Options
"""
------------------------------------
VARIABLES AND STUFF
------------------------------------
"""
KEYFILE = 'service_account_creds.json'
service_account_creds = os.getenv("SERVICE_ACCOUNT_CREDS")
worksheet_key = os.getenv("MOONWATCH_WORKSHEET_KEY")
"""
------------------------------------
GENERAL UTILITIES
------------------------------------
"""
def convertEpochToDate(epoch):
#timestamp_format = "%Y-%m-%d %H:%m:%S"
date_format = "%Y-%m-%d"
created_at_datetime = datetime.fromtimestamp(epoch)
created_at_date = created_at_datetime.strftime(date_format)
return created_at_date
def checkIfTradingHours():
'''
Returns a boolean indicating whether current time is within normal stonk trading hours.
Not currently being used anywhere but could be useful in the future, so keeping for now
'''
current_time = datetime.now().time()
market_open_time = datetime(2021, 1, 1, 13, 30, 0).time() #trading hours in UTC
market_close_time = datetime(2021, 1, 1, 20, 2, 0).time()
weekday = datetime.today().strftime('%A')
if weekday=='Saturday' or weekday=='Sunday':
return False
elif current_time>market_close_time or current_time<market_open_time:
return False
else:
return True
"""
------------------------------------
SLACK API
------------------------------------
"""
def post_message_to_slack(text, blocks = None):
slack_token = os.getenv('SLACK_TOKEN')
slack_channel = '#gme_moonwatch'
slack_icon_emoji = ':see_no_evil:'
slack_user_name = 'moonwatch'
return requests.post('https://slack.com/api/chat.postMessage', {
'token': slack_token,
'channel': slack_channel,
'text': text,
'icon_emoji': slack_icon_emoji,
'username': slack_user_name,
'blocks': json.dumps(blocks) if blocks else None
}).json()
"""
------------------------------------
GOOGLE SHEETS API
------------------------------------
"""
def authenticateGoogleSheets():
'''
Authenticates GCP Service account using credentials JSON stored in environment variable
Returns gc object
'''
# Authenticate Google service account to access Google Sheets
try:
with open(KEYFILE, "w") as secret_file:
secret_file.write(service_account_creds)
gc = gspread.service_account(filename=KEYFILE)
os.remove(KEYFILE)
except:
print("Google Sheets authentication failed :( :( :(")
return gc
def loadGoogleSheetAsDF(worksheet_key, sheet_index):
# Get data from the worksheet
gc = authenticateGoogleSheets()
sh = gc.open_by_key(worksheet_key)
worksheet = sh.get_worksheet(sheet_index)
sheet_as_df = gd.get_as_dataframe(worksheet)
return sheet_as_df
def getMostRecentPriceFromSheet(ticker):
# Get prices dataframe
# Load the worksheet as a dataframe
sheet_index = int(os.environ['ALL_PRICES_SHEET_INDEX'])
all_prices_df = loadGoogleSheetAsDF(worksheet_key, sheet_index).sort_values(by=['Timestamp'])
all_prices_df = all_prices_df[all_prices_df['Ticker']==ticker]
most_recent_price_df = all_prices_df.sort_values('Timestamp',ascending=False).reset_index().loc[0:0][['Timestamp','Price']]
most_recent_price = most_recent_price_df['Price'][0]
return most_recent_price
"""
------------------------------------
YAHOO! FINANCE API
------------------------------------
"""
def getStockPrice(ticker):
'''
Returns current stock price for this ticker.
This uses my free trial account with rapidAPI.com, which is limited to 500 free calls per month.
So we will only check every half hour, and only during trading hours.
'''
url = "https://apidojo-yahoo-finance-v1.p.rapidapi.com/stock/v2/get-summary"
querystring = {"symbol":ticker,"region":"US"}
headers = {
'x-rapidapi-key': os.environ['RAPIDAPI_KEY'],
'x-rapidapi-host': os.environ['RAPIDAPI_HOST']
}
response = requests.request("GET", url, headers=headers, params=querystring)
response_json = json.loads(response.text)
price = response_json['price']['regularMarketPrice']['fmt']
print(f"The current price of {ticker} is {price}")
return price
def getStomnkPriceDataframe(ticker):
'''
1. Fetches current stock price of ticker using getStockPrice(ticker)
2. Returns a dataframe containing the result along with current timestamp
'''
if checkIfTradingHours():
price = getStockPrice(ticker)
output_dict = dict()
output_dict['Date']=date.today()
output_dict['Timestamp']=datetime.now(tz=None)
output_dict['Ticker']=ticker
output_dict['Price']=price
new_data_df = pd.DataFrame(output_dict, index=[0])
return new_data_df
# If outside of trading hours, do not run! We only get 500 free API calls per month lol. MONEY PLEASE???
else:
print("Outside trading hours. Chill")
return None
def createSlackMessage(new_data_df,price_change):
price = new_data_df['Price'][0]
if price_change>0.05:
message = f":gorilla::rocket::waning_crescent_moon::last_quarter_moon::waning_gibbous_moon::full_moon: ${price}"
elif price_change>0.01:
message = f":biden_point::rocket: ${price}"
elif price_change>0.005:
message = f":rocket: ${price}"
elif price_change>0:
message = f":banana: ${price}"
elif price_change<-.01:
message = f":porg::sweat_drops: ${price}"
elif price_change<-.005:
message = f":porg: ${price}"
else:
message = f":gorilla: ${price}"
return message
def updateStonkxData(ticker):
'''
Fetch realtime stock price and post a message in Slack.
1) Scrape current stock price from Yahoo! finance
2) Check to see whether it's changed from the last scrape
3a) If price has changed, write a new row to the Google Sheet and send a message to Slack
3b) If price is same, do nothing
'''
if not checkIfTradingHours():
print("We are outside trading hours. Chill")
return
else:
# Get df with updated stonk data
new_data_df = getStomnkPriceDataframe(ticker)
# We will only add this to the Google Sheet if the price has changed.
# Fetch data from the existing sheet and compare our new dataframe with the most recent row in the Gsheet
# Load the worksheet as a dataframe
sheet_index = int(os.environ['ALL_PRICES_SHEET_INDEX'])
sheet_as_df = loadGoogleSheetAsDF(worksheet_key, sheet_index).sort_values(by=['Timestamp'])
# Filter to rows for specific ticker
sheet_as_df = sheet_as_df[sheet_as_df['Ticker']==ticker]
# Compare price values in latest row vs. prior row
previous_price = sheet_as_df.iloc[len(sheet_as_df)-1:len(sheet_as_df)].reset_index()['Price'][0]
previous_price = float(previous_price)
new_price = new_data_df['Price'][0]
new_price = float(new_price)
price_change = new_price/previous_price-1
print(f"new price: {new_price}. Old price: {previous_price}. Price change: {price_change}")
print(f"Has the price changed? {new_price!=previous_price}")
# If price has changed, append the new number to the Google Sheet
if float(new_price)!=previous_price:
print("Adding new data to spreadsheet")
updated_df = sheet_as_df.append(new_data_df)
# get worksheet object
gc = authenticateGoogleSheets()
sh = gc.open_by_key(worksheet_key)
worksheet = sh.get_worksheet(sheet_index)
# update worksheet with updated dataframe
gd.set_with_dataframe(worksheet, updated_df)
# Post to Slack, but only during trading hours
message = createSlackMessage(new_data_df,price_change)
print(f"Slack message: {message}")
post_message_to_slack(message, blocks = None)
# If price has not changed, nothing happens
else:
print("Price has not changed - HODL")
print("All done!")
def updateHistoricalData(ticker):
'''
Update Google sheets tab containing historical data for {ticker}
TODO(): refactor to process a list of tickers instead of just one
'''
print(f"Updating historical data for {ticker}...")
# call API to fetch historical data
url = "https://apidojo-yahoo-finance-v1.p.rapidapi.com/stock/v3/get-historical-data"
querystring = {"symbol":ticker,"region":"US"}
headers = {
'x-rapidapi-key': os.environ['RAPIDAPI_KEY'],
'x-rapidapi-host': os.environ['RAPIDAPI_HOST']
}
response = requests.request("GET", url, headers=headers, params=querystring)
historical_data_json = json.loads(response.text)
# load response data into a dataframe
historical_data_df = pd.DataFrame(historical_data_json['prices'])
historical_data_df = historical_data_df.rename(columns={"date":"timestamp_epoch"})
historical_data_df['Date'] = [convertEpochToDate(x) for x in historical_data_df['timestamp_epoch']]
historical_data_df = historical_data_df.drop(['timestamp_epoch'],axis=1)
historical_data_df['Ticker'] = ticker
# Calculate the rank and percentile of the trading volume for each day, considering the past 52 weeks of data
daily_volumes = historical_data_df[['Date','volume']].sort_values('volume')
#daily_volume_rank_p52w = daily_volumes.groupby().cumcount()
daily_volumes = daily_volumes.reset_index().reset_index()
daily_volumes = daily_volumes.rename(columns={"level_0":"volume_rank"})
daily_volumes['volume_rank'] = daily_volumes['volume_rank']+1
daily_volumes['volume_percentile'] = daily_volumes['volume_rank']/len(daily_volumes)
daily_volume_ranks_and_percentiles = daily_volumes[['Date','volume_rank','volume_percentile']]
historical_data_df = historical_data_df.merge(daily_volume_ranks_and_percentiles,how='inner',on='Date')
# Add rownums partitioned by ticker. We will use these to get prior day stats
rownum = historical_data_df.groupby(['Ticker']).cumcount()
historical_data_df['rownum'] = [x for x in rownum]
# Create "prior day" dataframe with rownums incremented by 1
historical_data_df_prior_day = historical_data_df.copy()
historical_data_df_prior_day = historical_data_df_prior_day.drop(['Date'],axis=1)
historical_data_df_prior_day.columns = [x+' prior day' for x in historical_data_df_prior_day.columns]
historical_data_df_prior_day = historical_data_df_prior_day.rename(columns={'Ticker prior day':'Ticker'})
historical_data_df_prior_day = historical_data_df_prior_day.rename(columns={'rownum prior day':'rownum'})
historical_data_df_prior_day['rownum']=[x-1 for x in historical_data_df_prior_day['rownum']]
historical_data_df = historical_data_df.merge(historical_data_df_prior_day,how='inner',on=['Ticker','rownum'])
historical_data_df = historical_data_df[['Date'
,'Ticker'
,'open'
,'high'
,'low'
,'close'
,'volume'
,'adjclose'
,'open prior day'
,'high prior day'
,'low prior day'
,'close prior day'
,'volume prior day'
,'adjclose prior day'
]]
# Add a few more calculated fields
historical_data_df['Intraday Price Change (Dollars)'] = historical_data_df['close'] - historical_data_df['open']
historical_data_df['Intraday Price Change (Percentage)'] = [(historical_data_df['close'][i]/historical_data_df['open'][i])-1 for i in range(len(historical_data_df['close']))]
historical_data_df['Closing Price Delta from Prior Day (Dollars)'] = historical_data_df['close'] - historical_data_df['close prior day']
historical_data_df['Closing Price Delta from Prior Day (Percentage)'] = [(historical_data_df['close'][i]/historical_data_df['close prior day'][i])-1 for i in range(len(historical_data_df['close']))]
# update the Google Sheets worksheet
sheet_index = int(os.environ['HISTORICAL_DATA_SHEET_INDEX'])
gc = authenticateGoogleSheets()
sh = gc.open_by_key(worksheet_key)
historical_data_worksheet = sh.get_worksheet(sheet_index)
gd.set_with_dataframe(historical_data_worksheet, historical_data_df)
print(f"Historical data for {ticker} updated successfully")
"""
------------------------------------------------------------------------
SELENIUM
------------------------------------------------------------------------
"""
def getScreenshot(ticker):
'''
Given a specific ticker, opens Google search page and grabs a screenshot
Returns the filename of the resulting image
'''
CHROMEDRIVER_PATH = os.environ.get('CHROMEDRIVER_PATH', '/usr/local/bin/chromedriver')
GOOGLE_CHROME_BIN = os.environ.get('GOOGLE_CHROME_BIN', '/usr/bin/google-chrome')
filename = f'{ticker}_screenshot.png'
options = Options()
options.binary_location = GOOGLE_CHROME_BIN
options.add_argument('--disable-gpu')
options.add_argument('--no-sandbox')
options.add_argument("--window-size=1920,1080")
options.headless = True
driver = webdriver.Chrome(executable_path=CHROMEDRIVER_PATH , chrome_options=options)
print("WOW the driver works")
url = f'https://www.google.com/search?q={ticker}+stock'
driver.get(url)
print("got the URL. Waiting 2 seconds...")
t.sleep(2)
print("OK grabbing a screenshot now")
driver.save_screenshot(filename)
print("Closing the webdriver")
driver.close()
return filename
"""
------------------------------------------------------------------------
PYTHON IMAGE LIBRARY
------------------------------------------------------------------------
"""
def cropImage(filename):
# Opens a image in RGB mode
im = Image.open(filename)
# Setting the points for cropped image
left = 185
top = 350
right = 830
bottom = 690
# Cropped image of above dimension
# (It will not change original image)
im1 = im.crop((left, top, right, bottom))
# Overwrite the file with the new cropped version
im1 = im1.save(filename)
"""
------------------------------------------------------------------------
IMGUR API
------------------------------------------------------------------------
"""
def uploadFileToImgur(filename):
'''
Uploads file to imgur and returns the URL where it has been uploaded
'''
client_id = os.getenv('IMGUR_CLIENT_ID')
headers = {"Authorization": f"Client-ID {client_id}"}
api_key = os.getenv('IMGUR_CLIENT_ID')
url = "https://api.imgur.com/3/upload.json"
j1 = requests.post(
url,
headers = headers,
data = {
'key': api_key,
'image': b64encode(open(f'{filename}', 'rb').read()),
'type': 'base64',
'name': filename,
'title': 'GME stomnks (not financial advice)'
}
)
response_json = json.loads(j1.text)
try:
url_output = response_json['data']['link']
except:
url_output = None
return url_output
"""
------------------------------------------------------------------------
CRAFTING BEAUTIFUL MESSAGES TO DELIVER IN SLACK
------------------------------------------------------------------------
"""
def postEODStatusUpdate(ticker):
'''
For a given ticker, post a status update to #gme_moonwatch summarizing the day's trading stats
This will be scheduled to run at the end of every trading day
'''
# Load the worksheet as a dataframe
sheet_index = int(os.environ['HISTORICAL_DATA_SHEET_INDEX'])
summary_df = loadGoogleSheetAsDF(worksheet_key, sheet_index)
# Filter summary to selected ticker & today's date
today = str(date.today())
today_summary = summary_df[(summary_df['Date']==today) & (summary_df['Ticker']==ticker)]
# Extract metrics from the summary table
trading_open = round(today_summary['open'][0],2)
trading_close = round(today_summary['close'][0],2)
trading_high = round(today_summary['high'][0],2)
trading_low = round(today_summary['low'][0],2)
trading_volume = today_summary['volume'][0]
trading_intraday_delta = today_summary['Intraday Price Change (Dollars)'][0]
trading_intraday_delta_pct = today_summary['Intraday Price Change (Percentage)'][0]
trading_intraday_delta_pct = str(round(trading_intraday_delta_pct*100,1))+"%"
trading_close_vs_prior_day = today_summary['Closing Price Delta from Prior Day (Dollars)'][0]
trading_close_vs_prior_day_pct = today_summary['Closing Price Delta from Prior Day (Percentage)'][0]
trading_close_vs_prior_day_pct = str(round(trading_close_vs_prior_day_pct*100,1))+"%"
if trading_intraday_delta>0:
trading_intraday_delta_direction='Up'
else:
trading_intraday_delta_direction='Down'
if trading_close_vs_prior_day>0:
trading_close_vs_prior_day_direction='Up'
else:
trading_close_vs_prior_day_direction='Down'
# Craft a beautiful and helpful Slack message
EOD_summary_message = f'''
Hello apes! What a day it has been! Here is your summary of our progress towards the :rocket: moon :rocket: today.
Open: ${trading_open}
Close: ${trading_close} ({trading_intraday_delta_direction} {trading_intraday_delta_pct} from open; {trading_close_vs_prior_day_direction} {trading_close_vs_prior_day_pct} from prior close)
Today's high: ${trading_high} :rocket:
Today's low: ${trading_low} :porg::sweat_drops:
Today's trading volume: {trading_volume} (is that a lot? :thinkintense:)
*The following is not financial advice, I just love the stock:*
Outlook: Bullish
Recommendation: HODL
'''
# Update slack!
if checkIfTradingHours():
print("Sending EOD summary message to Slack")
post_message_to_slack(EOD_summary_message, blocks = None)
else:
return
def postGoodMorningMessage():
'''
Just a friendly greeting to start the trading day
'''
greeting_message = f'''
:city_sunrise: Good morning apes! Let's buckle up and make today the best day it can be!
:gem:
:gem: :gem:
:gem: :gem: :gem:
:gem: :gem: :gem: :gem: :rocket: :banana: :gorilla:
:gem: :gem: :gem:
:gem: :gem:
:gem:
'''
# Update slack!
if checkIfTradingHours():
print("Sending good morning message to Slack")
post_message_to_slack(greeting_message, blocks = None)
else:
return
def postTrendImage(ticker):
if checkIfTradingHours():
# Use Selenium to save a screenshot
print("Using Selenium to fetch a screenshot")
filename = getScreenshot(ticker)
# Crop the screenshot to show only the cute trend chart
print(f"Screenshot saved: {filename}. Cropping image and uploading to Imgur...")
cropImage(filename)
try:
imgur_url = uploadFileToImgur(filename)
print(f"Imgur upload success! URL: {imgur_url}. Posting to slack babyyy")
image_message = f"<{imgur_url}|.>"
post_message_to_slack(image_message, blocks = None)
except:
print(f"Imgur upload failed :(")
else:
print("We are outside trading hours - chill")