-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_model.py
41 lines (32 loc) · 1.46 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import tensorflow as tf
from time import sleep
import cv2
import numpy as np
face_classifier = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
classifier = tf.keras.models.load_model('model.h5')
emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad', 'Surprise']
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
labels = []
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2)
roi_gray = gray[y:y + h, x:x + w]
roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)
if np.sum([roi_gray]) != 0:
roi = roi_gray.astype('float') / 255.0
roi = np.expand_dims(roi, axis=0)
roi = np.expand_dims(roi, axis=-1) # Assuming the model expects images with 3 channels
prediction = classifier.predict(roi)
label = emotion_labels[np.argmax(prediction)]
label_position = (x, y)
cv2.putText(frame, label, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
else:
cv2.putText(frame, 'No Faces', (30, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow('Emotion Detector', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()