forked from oduerr/dl_tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_generator_didaktik.py
41 lines (33 loc) · 1.4 KB
/
lstm_generator_didaktik.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from __future__ import absolute_import, division, print_function
import os
import pickle
from six.moves import urllib
import tflearn
from tflearn.data_utils import *
path = "zu05056.txt"
maxlen = 25
X, Y, char_idx = \
textfile_to_semi_redundant_sequences(path, seq_maxlen=maxlen, redun_step=3)
g = tflearn.input_data([None, maxlen, len(char_idx)])
g = tflearn.lstm(g, 512, return_seq=True)
g = tflearn.dropout(g, 0.5)
g = tflearn.lstm(g, 512, return_seq=True)
g = tflearn.dropout(g, 0.5)
g = tflearn.lstm(g, 512)
g = tflearn.dropout(g, 0.5)
g = tflearn.fully_connected(g, len(char_idx), activation='softmax')
g = tflearn.regression(g, optimizer='adam', loss='categorical_crossentropy',
learning_rate=0.001)
m = tflearn.SequenceGenerator(g, dictionary=char_idx,
seq_maxlen=maxlen,
clip_gradients=5.0,
checkpoint_path='model_didactic')
for i in range(10):
seed = random_sequence_from_textfile(path, maxlen)
print(m.generate(400, temperature=1.0, seq_seed=seed))
m.fit(X, Y, validation_set=0.1, batch_size=128, n_epoch=1, run_id='shakespeare')
print("-- TESTING --- epoch {}".format(i))
print("-- Test with temperature of 1.0 --")
print(m.generate(400, temperature=1.0, seq_seed=seed))
print("-- Test with temperature of 0.5 --")
print(m.generate(400, temperature=0.5, seq_seed=seed))